rehanafzal's picture
Update app.py
e60d54e verified
raw
history blame
6.01 kB
# import streamlit as st
# import pandas as pd
# import plotly.express as px
# from app_backend import fetch_weather, generate_synthetic_data, optimize_load
# # Constants
# API_KEY = "84e26811a314599e940f343b4d5894a7"
# LOCATION = "Pakistan"
# # Sidebar
# st.sidebar.title("Smart Grid Dashboard")
# location = st.sidebar.text_input("Enter Location", LOCATION)
# # Fetch and display weather data
# weather = fetch_weather(API_KEY, location)
# if weather:
# st.sidebar.write(f"Temperature: {weather['temperature']} °C")
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
# st.sidebar.write(f"Weather: {weather['weather']}")
# # Main dashboard with tabs
# tabs = st.tabs(["Home", "Storage", "Trading"])
# with tabs[0]:
# st.title("Real-Time Smart Grid Dashboard")
# # Generate synthetic data
# data = generate_synthetic_data()
# # Plot total consumption, grid generation, and storage usage
# fig = px.line(data, x="timestamp", y=["total_consumption_kwh", "grid_generation_kwh", "storage_usage_kwh"],
# title="Energy Consumption, Generation, and Storage Usage Over Time",
# labels={"value": "Energy (kWh)", "variable": "Energy Source"})
# st.plotly_chart(fig)
# # Grid health overview
# st.subheader("Grid Health Overview")
# grid_health_counts = data["grid_health"].value_counts()
# st.bar_chart(grid_health_counts)
# # Optimization recommendations
# current_demand = data["total_consumption_kwh"].iloc[-1]
# current_solar = data["solar_output_kw"].iloc[-1]
# current_wind = data["wind_output_kw"].iloc[-1]
# recommendation = optimize_load(current_demand, current_solar, current_wind)
# st.subheader("Recommendations")
# st.write(f"Current Load Demand: {current_demand} kWh")
# st.write(f"Solar Output: {current_solar} kW")
# st.write(f"Wind Output: {current_wind} kW")
# st.write(f"Recommendation: {recommendation}")
# with tabs[1]:
# st.title("Energy Storage Overview")
# # Total energy stored
# total_storage = 500 # Example of total energy storage
# st.subheader(f"Total Energy Stored: {total_storage} kWh")
# # Energy storage contribution from different sources
# st.subheader("Energy Storage Contributions")
# energy_sources = pd.DataFrame({
# "Source": ["Wind", "Solar", "Turbine"],
# "Energy (kW/min)": [5, 7, 10]
# })
# st.bar_chart(energy_sources.set_index("Source"))
# # Show energy storage status with a rounded circle
# st.subheader("Energy Storage Circle")
# st.markdown("Energy storage is a combination of contributions from different renewable sources.")
# # Visualization of energy storage circle using Plotly
# storage_data = {
# "Source": ["Wind", "Solar", "Turbine"],
# "Energy": [5, 7, 10],
# }
# storage_df = pd.DataFrame(storage_data)
# fig = px.pie(storage_df, names="Source", values="Energy", title="Energy Storage Sources")
# st.plotly_chart(fig)
# with tabs[2]:
# st.title("Energy Trading Overview")
# # Energy cubes
# st.subheader("Energy Cubes Stored")
# energy_cubes = pd.DataFrame({
# "Country": ["China", "Sri Lanka", "Bangladesh"],
# "Energy (kWh)": [100, 200, 300],
# "Shareable": [True, True, False]
# })
# # Displaying the energy cubes in a grid
# st.write("Stored energy can be shared with other countries.")
# st.dataframe(energy_cubes)
# # Visualization of energy that can be shared
# st.subheader("Energy Trading Visualization")
# st.markdown("The following energy amounts are available for sharing with different countries.")
# trading_fig = px.bar(energy_cubes, x="Country", y="Energy (kWh)", color="Shareable", title="Energy Trading")
# st.plotly_chart(trading_fig)
import streamlit as st
import pandas as pd
import plotly.express as px
from app_backend import fetch_weather, generate_synthetic_data, optimize_load
# Constants
API_KEY = "84e26811a314599e940f343b4d5894a7"
LOCATION = "Pakistan"
# Sidebar
st.sidebar.title("Smart Grid Dashboard")
location = st.sidebar.text_input("Enter Location", LOCATION)
# Fetch and display weather data
weather = fetch_weather(API_KEY, location)
if weather:
st.sidebar.write(f"Temperature: {weather['temperature']} °C")
st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
st.sidebar.write(f"Weather: {weather['weather']}")
# Main dashboard
st.title("Real-Time Smart Grid Dashboard")
# Generate synthetic data
data = generate_synthetic_data()
# Plot total power consumption (load demand) in MW
fig = px.line(data, x="timestamp", y="load_demand_mw", title="Power Consumption (MW) Over Time")
st.plotly_chart(fig)
# Plot renewable energy generation in MW (solar + wind) on the graph
fig = px.bar(
data,
x="timestamp",
y=["solar_output_mw", "wind_output_mw"],
title="Renewable Energy Generation (MW)",
labels={"value": "Power (MW)", "variable": "Energy Source"}
)
st.plotly_chart(fig)
# Show battery storage in kWh
fig = px.line(data, x="timestamp", y="battery_storage_kwh", title="Battery Storage (kWh) Over Time")
st.plotly_chart(fig)
# Grid health
st.subheader("Grid Health Overview")
grid_health_counts = data["grid_health"].value_counts()
st.bar_chart(grid_health_counts)
# Optimization recommendations
current_demand = data["load_demand_mw"].iloc[-1] # Load demand in MW
current_solar = data["solar_output_mw"].iloc[-1] # Solar output in MW
current_wind = data["wind_output_mw"].iloc[-1] # Wind output in MW
recommendation = optimize_load(current_demand, current_solar, current_wind)
st.subheader("Recommendations")
st.write(f"Current Load Demand: {current_demand} MW")
st.write(f"Solar Output: {current_solar} MW")
st.write(f"Wind Output: {current_wind} MW")
st.write(f"Recommendation: {recommendation}")
# Electricity Trade Management Tab
st.subheader("Electricity Trade Management")
st.write("Manage energy trading here.")