Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -100,6 +100,107 @@
|
|
100 |
# st.plotly_chart(trading_fig)
|
101 |
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
import streamlit as st
|
105 |
import pandas as pd
|
@@ -108,7 +209,7 @@ from app_backend import fetch_weather, generate_synthetic_data, generate_storage
|
|
108 |
|
109 |
# Constants
|
110 |
API_KEY = "84e26811a314599e940f343b4d5894a7"
|
111 |
-
DEFAULT_LOCATION = "
|
112 |
|
113 |
# Sidebar for location and weather data
|
114 |
st.sidebar.title("Smart Grid Dashboard")
|
@@ -124,7 +225,7 @@ if weather:
|
|
124 |
st.title("Real-Time Smart Grid Dashboard")
|
125 |
|
126 |
# Tabs
|
127 |
-
tabs = st.tabs(["Home", "
|
128 |
|
129 |
# Home Tab
|
130 |
with tabs[0]:
|
@@ -159,28 +260,71 @@ with tabs[0]:
|
|
159 |
fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)")
|
160 |
st.plotly_chart(fig)
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
# Storage Tab
|
163 |
with tabs[1]:
|
164 |
st.header("Energy Storage Overview")
|
165 |
storage_data = generate_storage_data()
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
st.plotly_chart(fig)
|
176 |
|
|
|
|
|
177 |
# Electricity Trade Management Tab
|
178 |
with tabs[2]:
|
179 |
st.header("Electricity Trade Management")
|
180 |
|
181 |
# Sample trade data
|
182 |
trade_data = {
|
183 |
-
"Country": ["
|
184 |
"Energy Exported (MW)": [50, 30, 70],
|
185 |
"Energy Imported (MW)": [20, 40, 10],
|
186 |
}
|
@@ -198,5 +342,3 @@ with tabs[2]:
|
|
198 |
|
199 |
|
200 |
|
201 |
-
|
202 |
-
|
|
|
100 |
# st.plotly_chart(trading_fig)
|
101 |
|
102 |
|
103 |
+
# code 2
|
104 |
+
|
105 |
+
|
106 |
+
# import streamlit as st
|
107 |
+
# import pandas as pd
|
108 |
+
# import plotly.graph_objects as go
|
109 |
+
# from app_backend import fetch_weather, generate_synthetic_data, generate_storage_data
|
110 |
+
|
111 |
+
# # Constants
|
112 |
+
# API_KEY = "84e26811a314599e940f343b4d5894a7"
|
113 |
+
# DEFAULT_LOCATION = "Pakistan"
|
114 |
+
|
115 |
+
# # Sidebar for location and weather data
|
116 |
+
# st.sidebar.title("Smart Grid Dashboard")
|
117 |
+
# location = st.sidebar.text_input("Enter Location", DEFAULT_LOCATION)
|
118 |
+
# weather = fetch_weather(API_KEY, location)
|
119 |
+
|
120 |
+
# if weather:
|
121 |
+
# st.sidebar.write(f"Temperature: {weather['temperature']} °C")
|
122 |
+
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
|
123 |
+
# st.sidebar.write(f"Weather: {weather['weather']}")
|
124 |
+
|
125 |
+
# # Main interface
|
126 |
+
# st.title("Real-Time Smart Grid Dashboard")
|
127 |
+
|
128 |
+
# # Tabs
|
129 |
+
# tabs = st.tabs(["Home", "Power Storage", "Electricity Trade Management"])
|
130 |
+
|
131 |
+
# # Home Tab
|
132 |
+
# with tabs[0]:
|
133 |
+
# st.header("Overview: Power and Energy Usage")
|
134 |
+
|
135 |
+
# # Fetch synthetic data
|
136 |
+
# data = generate_synthetic_data()
|
137 |
+
|
138 |
+
# # Line Graph for Power Consumption, Generation, and Storage
|
139 |
+
# fig = go.Figure()
|
140 |
+
# fig.add_trace(go.Scatter(
|
141 |
+
# x=data["timestamp"],
|
142 |
+
# y=data["total_power_consumption_mw"],
|
143 |
+
# mode='lines',
|
144 |
+
# name="Total Power Consumption (MW)",
|
145 |
+
# line=dict(color="red")
|
146 |
+
# ))
|
147 |
+
# fig.add_trace(go.Scatter(
|
148 |
+
# x=data["timestamp"],
|
149 |
+
# y=data["grid_generation_mw"],
|
150 |
+
# mode='lines',
|
151 |
+
# name="Grid Generation (MW)",
|
152 |
+
# line=dict(color="green")
|
153 |
+
# ))
|
154 |
+
# fig.add_trace(go.Scatter(
|
155 |
+
# x=data["timestamp"],
|
156 |
+
# y=data["storage_utilization_mw"],
|
157 |
+
# mode='lines',
|
158 |
+
# name="Storage Utilization (MW)",
|
159 |
+
# line=dict(color="blue")
|
160 |
+
# ))
|
161 |
+
# fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)")
|
162 |
+
# st.plotly_chart(fig)
|
163 |
+
|
164 |
+
# # Storage Tab
|
165 |
+
# with tabs[1]:
|
166 |
+
# st.header("Energy Storage Overview")
|
167 |
+
# storage_data = generate_storage_data()
|
168 |
+
|
169 |
+
# st.write(f"**Total Energy Stored:** {storage_data['total_stored_kwh']} kWh")
|
170 |
+
|
171 |
+
# # Circular storage breakdown
|
172 |
+
# sources = ["Wind", "Solar", "Turbine"]
|
173 |
+
# values = [storage_data["wind"], storage_data["solar"], storage_data["turbine"]]
|
174 |
+
|
175 |
+
# fig = go.Figure(data=[go.Pie(labels=sources, values=values, hole=.4)])
|
176 |
+
# fig.update_layout(title="Energy Storage Breakdown")
|
177 |
+
# st.plotly_chart(fig)
|
178 |
+
|
179 |
+
# # Electricity Trade Management Tab
|
180 |
+
# with tabs[2]:
|
181 |
+
# st.header("Electricity Trade Management")
|
182 |
+
|
183 |
+
# # Sample trade data
|
184 |
+
# trade_data = {
|
185 |
+
# "Country": ["Srilanka", "China", "Bangladesh"],
|
186 |
+
# "Energy Exported (MW)": [50, 30, 70],
|
187 |
+
# "Energy Imported (MW)": [20, 40, 10],
|
188 |
+
# }
|
189 |
+
# trade_df = pd.DataFrame(trade_data)
|
190 |
+
|
191 |
+
# st.subheader("Trade Details")
|
192 |
+
# st.write(trade_df)
|
193 |
+
|
194 |
+
# # Visualization
|
195 |
+
# fig = go.Figure()
|
196 |
+
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Exported (MW)"], name="Exported", marker_color='purple'))
|
197 |
+
# fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Imported (MW)"], name="Imported", marker_color='orange'))
|
198 |
+
# fig.update_layout(title="Energy Trade", barmode='group')
|
199 |
+
# st.plotly_chart(fig)
|
200 |
+
|
201 |
+
|
202 |
+
# code 3
|
203 |
+
|
204 |
|
205 |
import streamlit as st
|
206 |
import pandas as pd
|
|
|
209 |
|
210 |
# Constants
|
211 |
API_KEY = "84e26811a314599e940f343b4d5894a7"
|
212 |
+
DEFAULT_LOCATION = "pakistan"
|
213 |
|
214 |
# Sidebar for location and weather data
|
215 |
st.sidebar.title("Smart Grid Dashboard")
|
|
|
225 |
st.title("Real-Time Smart Grid Dashboard")
|
226 |
|
227 |
# Tabs
|
228 |
+
tabs = st.tabs(["Home", "Storage", "Electricity Trade Management"])
|
229 |
|
230 |
# Home Tab
|
231 |
with tabs[0]:
|
|
|
260 |
fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)")
|
261 |
st.plotly_chart(fig)
|
262 |
|
263 |
+
# Grid Health Indicator
|
264 |
+
st.subheader("Grid Health Status")
|
265 |
+
grid_health = "Stable" if data["grid_generation_mw"].mean() >= data["total_power_consumption_mw"].mean() else "Critical"
|
266 |
+
st.write(f"**Grid Health:** {grid_health}")
|
267 |
+
|
268 |
+
# AI Recommendations
|
269 |
+
st.subheader("AI Recommendations")
|
270 |
+
recommendations = [
|
271 |
+
"Increase solar panel efficiency by 10% for peak hours.",
|
272 |
+
"Optimize wind turbine alignment based on real-time wind data.",
|
273 |
+
"Store excess energy during low-demand periods for future use.",
|
274 |
+
"Improve grid stability by distributing load dynamically across sectors.",
|
275 |
+
]
|
276 |
+
for rec in recommendations:
|
277 |
+
st.write(f"- {rec}")
|
278 |
+
|
279 |
# Storage Tab
|
280 |
with tabs[1]:
|
281 |
st.header("Energy Storage Overview")
|
282 |
storage_data = generate_storage_data()
|
283 |
|
284 |
+
# Individual Circles for Wind, Solar, and Turbine
|
285 |
+
st.subheader("Energy Contributions")
|
286 |
+
col1, col2, col3 = st.columns(3)
|
287 |
+
with col1:
|
288 |
+
st.metric("Wind Energy", f"{storage_data['wind']} MW/min")
|
289 |
+
with col2:
|
290 |
+
st.metric("Solar Energy", f"{storage_data['solar']} MW/min")
|
291 |
+
with col3:
|
292 |
+
st.metric("Turbine Energy", f"{storage_data['turbine']} MW/min")
|
293 |
+
|
294 |
+
# Central Grid Storage Visualization
|
295 |
+
st.subheader("Total Energy Stored in Grid")
|
296 |
+
fig = go.Figure()
|
297 |
+
fig.add_trace(go.Scatter(x=[0], y=[0], mode='markers+text', text=["Grid"], marker=dict(size=70, color="blue")))
|
298 |
+
fig.add_trace(go.Scatter(
|
299 |
+
x=[-1, 1, 0],
|
300 |
+
y=[1, 1, -1],
|
301 |
+
mode='markers+text',
|
302 |
+
text=["Wind", "Solar", "Turbine"],
|
303 |
+
marker=dict(size=50, color=["green", "yellow", "orange"])
|
304 |
+
))
|
305 |
+
fig.add_trace(go.Scatter(
|
306 |
+
x=[-0.5, 0.5, 0],
|
307 |
+
y=[0.5, 0.5, -0.5],
|
308 |
+
mode="lines",
|
309 |
+
line=dict(width=3, color="gray"),
|
310 |
+
))
|
311 |
+
fig.update_layout(
|
312 |
+
title="Energy Storage Visualization",
|
313 |
+
xaxis=dict(visible=False),
|
314 |
+
yaxis=dict(visible=False),
|
315 |
+
showlegend=False
|
316 |
+
)
|
317 |
st.plotly_chart(fig)
|
318 |
|
319 |
+
st.write(f"**Total Energy Stored:** {storage_data['total_stored_kwh']} kWh")
|
320 |
+
|
321 |
# Electricity Trade Management Tab
|
322 |
with tabs[2]:
|
323 |
st.header("Electricity Trade Management")
|
324 |
|
325 |
# Sample trade data
|
326 |
trade_data = {
|
327 |
+
"Country": ["Country A", "Country B", "Country C"],
|
328 |
"Energy Exported (MW)": [50, 30, 70],
|
329 |
"Energy Imported (MW)": [20, 40, 10],
|
330 |
}
|
|
|
342 |
|
343 |
|
344 |
|
|
|
|