rehanafzal commited on
Commit
4e21788
·
verified ·
1 Parent(s): 2a5b94e

Update app_backend.py

Browse files
Files changed (1) hide show
  1. app_backend.py +49 -7
app_backend.py CHANGED
@@ -1,3 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import pandas as pd
2
  import numpy as np
3
  import plotly.express as px
@@ -16,20 +59,19 @@ def fetch_weather(api_key, location):
16
  }
17
  return None
18
 
19
- # Generate synthetic grid data
20
  def generate_synthetic_data():
21
  time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
22
  return pd.DataFrame({
23
  "timestamp": time_index,
24
- "total_consumption_kwh": np.random.randint(200, 500, len(time_index)),
25
- "grid_generation_kwh": np.random.randint(150, 400, len(time_index)),
26
- "storage_usage_kwh": np.random.randint(50, 150, len(time_index)),
27
- "solar_output_kw": np.random.randint(50, 150, len(time_index)),
28
- "wind_output_kw": np.random.randint(30, 120, len(time_index)),
29
  "grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index))
30
  })
31
 
32
- # Load optimization recommendation
33
  def optimize_load(demand, solar, wind):
34
  renewable_supply = solar + wind
35
  if renewable_supply >= demand:
 
1
+ # import pandas as pd
2
+ # import numpy as np
3
+ # import plotly.express as px
4
+ # from datetime import datetime, timedelta
5
+ # import requests
6
+
7
+ # # Function to fetch real-time weather data
8
+ # def fetch_weather(api_key, location):
9
+ # url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric"
10
+ # response = requests.get(url).json()
11
+ # if response["cod"] == 200:
12
+ # return {
13
+ # "temperature": response["main"]["temp"],
14
+ # "wind_speed": response["wind"]["speed"],
15
+ # "weather": response["weather"][0]["description"]
16
+ # }
17
+ # return None
18
+
19
+ # # Generate synthetic grid data
20
+ # def generate_synthetic_data():
21
+ # time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
22
+ # return pd.DataFrame({
23
+ # "timestamp": time_index,
24
+ # "total_consumption_kwh": np.random.randint(200, 500, len(time_index)),
25
+ # "grid_generation_kwh": np.random.randint(150, 400, len(time_index)),
26
+ # "storage_usage_kwh": np.random.randint(50, 150, len(time_index)),
27
+ # "solar_output_kw": np.random.randint(50, 150, len(time_index)),
28
+ # "wind_output_kw": np.random.randint(30, 120, len(time_index)),
29
+ # "grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index))
30
+ # })
31
+
32
+ # # Load optimization recommendation
33
+ # def optimize_load(demand, solar, wind):
34
+ # renewable_supply = solar + wind
35
+ # if renewable_supply >= demand:
36
+ # return "Grid Stable"
37
+ # return "Use Backup or Adjust Load"
38
+
39
+ # # Export functions for use in Streamlit
40
+ # if __name__ == "__main__":
41
+ # print("Backend ready!")
42
+
43
+
44
  import pandas as pd
45
  import numpy as np
46
  import plotly.express as px
 
59
  }
60
  return None
61
 
62
+ # Generate synthetic grid data in MW (for generation) and kWh (for load)
63
  def generate_synthetic_data():
64
  time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
65
  return pd.DataFrame({
66
  "timestamp": time_index,
67
+ "load_demand_mw": np.random.uniform(0.2, 0.5, len(time_index)), # Load demand in MW
68
+ "solar_output_mw": np.random.uniform(0.05, 0.15, len(time_index)), # Solar output in MW
69
+ "wind_output_mw": np.random.uniform(0.03, 0.12, len(time_index)), # Wind output in MW
70
+ "battery_storage_kwh": np.random.randint(100, 500, len(time_index)), # Battery storage in kWh
 
71
  "grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index))
72
  })
73
 
74
+ # Load optimization recommendation in MW
75
  def optimize_load(demand, solar, wind):
76
  renewable_supply = solar + wind
77
  if renewable_supply >= demand: