Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,107 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
import plotly.
|
4 |
-
from app_backend import fetch_weather, generate_synthetic_data,
|
5 |
|
6 |
# Constants
|
7 |
API_KEY = "84e26811a314599e940f343b4d5894a7"
|
8 |
-
|
9 |
|
10 |
-
# Sidebar
|
11 |
st.sidebar.title("Smart Grid Dashboard")
|
12 |
-
location = st.sidebar.text_input("Enter Location",
|
13 |
-
|
14 |
-
# Fetch and display weather data
|
15 |
weather = fetch_weather(API_KEY, location)
|
|
|
16 |
if weather:
|
17 |
st.sidebar.write(f"Temperature: {weather['temperature']} °C")
|
18 |
st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
|
19 |
st.sidebar.write(f"Weather: {weather['weather']}")
|
20 |
|
21 |
-
# Main
|
22 |
-
|
23 |
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
data = generate_synthetic_data()
|
29 |
|
30 |
-
#
|
31 |
-
fig =
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
st.plotly_chart(fig)
|
35 |
|
36 |
-
|
37 |
-
st.subheader("Grid Health Overview")
|
38 |
-
grid_health_counts = data["grid_health"].value_counts()
|
39 |
-
st.bar_chart(grid_health_counts)
|
40 |
-
|
41 |
-
# Optimization recommendations
|
42 |
-
current_demand = data["total_consumption_kwh"].iloc[-1]
|
43 |
-
current_solar = data["solar_output_kw"].iloc[-1]
|
44 |
-
current_wind = data["wind_output_kw"].iloc[-1]
|
45 |
-
recommendation = optimize_load(current_demand, current_solar, current_wind)
|
46 |
-
|
47 |
-
st.subheader("Recommendations")
|
48 |
-
st.write(f"Current Load Demand: {current_demand} kWh")
|
49 |
-
st.write(f"Solar Output: {current_solar} kW")
|
50 |
-
st.write(f"Wind Output: {current_wind} kW")
|
51 |
-
st.write(f"Recommendation: {recommendation}")
|
52 |
-
|
53 |
with tabs[1]:
|
54 |
-
st.
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
})
|
66 |
-
st.bar_chart(energy_sources.set_index("Source"))
|
67 |
-
|
68 |
-
# Show energy storage status with a rounded circle
|
69 |
-
st.subheader("Energy Storage Circle")
|
70 |
-
st.markdown("Energy storage is a combination of contributions from different renewable sources.")
|
71 |
-
|
72 |
-
# Visualization of energy storage circle using Plotly
|
73 |
-
storage_data = {
|
74 |
-
"Source": ["Wind", "Solar", "Turbine"],
|
75 |
-
"Energy": [5, 7, 10],
|
76 |
-
}
|
77 |
-
storage_df = pd.DataFrame(storage_data)
|
78 |
-
fig = px.pie(storage_df, names="Source", values="Energy", title="Energy Storage Sources")
|
79 |
st.plotly_chart(fig)
|
80 |
|
|
|
81 |
with tabs[2]:
|
82 |
-
st.
|
83 |
-
|
84 |
-
# Energy cubes
|
85 |
-
st.subheader("Energy Cubes Stored")
|
86 |
-
energy_cubes = pd.DataFrame({
|
87 |
-
"Country": ["China", "Sri Lanka", "Bangladesh"],
|
88 |
-
"Energy (kWh)": [100, 200, 300],
|
89 |
-
"Shareable": [True, True, False]
|
90 |
-
})
|
91 |
-
|
92 |
-
# Displaying the energy cubes in a grid
|
93 |
-
st.write("Stored energy can be shared with other countries.")
|
94 |
-
st.dataframe(energy_cubes)
|
95 |
-
|
96 |
-
# Visualization of energy that can be shared
|
97 |
-
st.subheader("Energy Trading Visualization")
|
98 |
-
st.markdown("The following energy amounts are available for sharing with different countries.")
|
99 |
-
trading_fig = px.bar(energy_cubes, x="Country", y="Energy (kWh)", color="Shareable", title="Energy Trading")
|
100 |
-
st.plotly_chart(trading_fig)
|
101 |
-
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
|
|
|
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
|
107 |
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import pandas as pd
|
3 |
+
# import plotly.express as px
|
4 |
+
# from app_backend import fetch_weather, generate_synthetic_data, optimize_load
|
5 |
+
|
6 |
+
# # Constants
|
7 |
+
# API_KEY = "84e26811a314599e940f343b4d5894a7"
|
8 |
+
# LOCATION = "Pakistan"
|
9 |
+
|
10 |
+
# # Sidebar
|
11 |
+
# st.sidebar.title("Smart Grid Dashboard")
|
12 |
+
# location = st.sidebar.text_input("Enter Location", LOCATION)
|
13 |
+
|
14 |
+
# # Fetch and display weather data
|
15 |
+
# weather = fetch_weather(API_KEY, location)
|
16 |
+
# if weather:
|
17 |
+
# st.sidebar.write(f"Temperature: {weather['temperature']} °C")
|
18 |
+
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
|
19 |
+
# st.sidebar.write(f"Weather: {weather['weather']}")
|
20 |
+
|
21 |
+
# # Main dashboard with tabs
|
22 |
+
# tabs = st.tabs(["Home", "Electricity Storage", "Electricity Trading"])
|
23 |
+
|
24 |
+
# with tabs[0]:
|
25 |
+
# st.title("Real-Time Smart Grid Dashboard")
|
26 |
+
|
27 |
+
# # Generate synthetic data
|
28 |
+
# data = generate_synthetic_data()
|
29 |
+
|
30 |
+
# # Plot total consumption, grid generation, and storage usage
|
31 |
+
# fig = px.line(data, x="timestamp", y=["total_consumption_kwh", "grid_generation_kwh", "storage_usage_kwh"],
|
32 |
+
# title="Energy Consumption, Generation, and Storage Usage Over Time",
|
33 |
+
# labels={"value": "Energy (kWh)", "variable": "Energy Source"})
|
34 |
+
# st.plotly_chart(fig)
|
35 |
+
|
36 |
+
# # Grid health overview
|
37 |
+
# st.subheader("Grid Health Overview")
|
38 |
+
# grid_health_counts = data["grid_health"].value_counts()
|
39 |
+
# st.bar_chart(grid_health_counts)
|
40 |
+
|
41 |
+
# # Optimization recommendations
|
42 |
+
# current_demand = data["total_consumption_kwh"].iloc[-1]
|
43 |
+
# current_solar = data["solar_output_kw"].iloc[-1]
|
44 |
+
# current_wind = data["wind_output_kw"].iloc[-1]
|
45 |
+
# recommendation = optimize_load(current_demand, current_solar, current_wind)
|
46 |
+
|
47 |
+
# st.subheader("Recommendations")
|
48 |
+
# st.write(f"Current Load Demand: {current_demand} kWh")
|
49 |
+
# st.write(f"Solar Output: {current_solar} kW")
|
50 |
+
# st.write(f"Wind Output: {current_wind} kW")
|
51 |
+
# st.write(f"Recommendation: {recommendation}")
|
52 |
+
|
53 |
+
# with tabs[1]:
|
54 |
+
# st.title("Energy Storage Overview")
|
55 |
+
|
56 |
+
# # Total energy stored
|
57 |
+
# total_storage = 500 # Example of total energy storage
|
58 |
+
# st.subheader(f"Total Energy Stored: {total_storage} kWh")
|
59 |
+
|
60 |
+
# # Energy storage contribution from different sources
|
61 |
+
# st.subheader("Energy Storage Contributions")
|
62 |
+
# energy_sources = pd.DataFrame({
|
63 |
+
# "Source": ["Wind", "Solar", "Turbine"],
|
64 |
+
# "Energy (kW/min)": [5, 7, 10]
|
65 |
+
# })
|
66 |
+
# st.bar_chart(energy_sources.set_index("Source"))
|
67 |
+
|
68 |
+
# # Show energy storage status with a rounded circle
|
69 |
+
# st.subheader("Energy Storage Circle")
|
70 |
+
# st.markdown("Energy storage is a combination of contributions from different renewable sources.")
|
71 |
+
|
72 |
+
# # Visualization of energy storage circle using Plotly
|
73 |
+
# storage_data = {
|
74 |
+
# "Source": ["Wind", "Solar", "Turbine"],
|
75 |
+
# "Energy": [5, 7, 10],
|
76 |
+
# }
|
77 |
+
# storage_df = pd.DataFrame(storage_data)
|
78 |
+
# fig = px.pie(storage_df, names="Source", values="Energy", title="Energy Storage Sources")
|
79 |
+
# st.plotly_chart(fig)
|
80 |
+
|
81 |
+
# with tabs[2]:
|
82 |
+
# st.title("Energy Trading Overview")
|
83 |
+
|
84 |
+
# # Energy cubes
|
85 |
+
# st.subheader("Energy Cubes Stored")
|
86 |
+
# energy_cubes = pd.DataFrame({
|
87 |
+
# "Country": ["China", "Sri Lanka", "Bangladesh"],
|
88 |
+
# "Energy (kWh)": [100, 200, 300],
|
89 |
+
# "Shareable": [True, True, False]
|
90 |
+
# })
|
91 |
+
|
92 |
+
# # Displaying the energy cubes in a grid
|
93 |
+
# st.write("Stored energy can be shared with other countries.")
|
94 |
+
# st.dataframe(energy_cubes)
|
95 |
+
|
96 |
+
# # Visualization of energy that can be shared
|
97 |
+
# st.subheader("Energy Trading Visualization")
|
98 |
+
# st.markdown("The following energy amounts are available for sharing with different countries.")
|
99 |
+
# trading_fig = px.bar(energy_cubes, x="Country", y="Energy (kWh)", color="Shareable", title="Energy Trading")
|
100 |
+
# st.plotly_chart(trading_fig)
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
import streamlit as st
|
105 |
import pandas as pd
|
106 |
+
import plotly.graph_objects as go
|
107 |
+
from app_backend import fetch_weather, generate_synthetic_data, generate_storage_data
|
108 |
|
109 |
# Constants
|
110 |
API_KEY = "84e26811a314599e940f343b4d5894a7"
|
111 |
+
DEFAULT_LOCATION = "Pakistan"
|
112 |
|
113 |
+
# Sidebar for location and weather data
|
114 |
st.sidebar.title("Smart Grid Dashboard")
|
115 |
+
location = st.sidebar.text_input("Enter Location", DEFAULT_LOCATION)
|
|
|
|
|
116 |
weather = fetch_weather(API_KEY, location)
|
117 |
+
|
118 |
if weather:
|
119 |
st.sidebar.write(f"Temperature: {weather['temperature']} °C")
|
120 |
st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
|
121 |
st.sidebar.write(f"Weather: {weather['weather']}")
|
122 |
|
123 |
+
# Main interface
|
124 |
+
st.title("Real-Time Smart Grid Dashboard")
|
125 |
|
126 |
+
# Tabs
|
127 |
+
tabs = st.tabs(["Home", "Storage", "Electricity Trade Management"])
|
128 |
|
129 |
+
# Home Tab
|
130 |
+
with tabs[0]:
|
131 |
+
st.header("Overview: Power and Energy Usage")
|
132 |
+
|
133 |
+
# Fetch synthetic data
|
134 |
data = generate_synthetic_data()
|
135 |
|
136 |
+
# Line Graph for Power Consumption, Generation, and Storage
|
137 |
+
fig = go.Figure()
|
138 |
+
fig.add_trace(go.Scatter(
|
139 |
+
x=data["timestamp"],
|
140 |
+
y=data["total_power_consumption_mw"],
|
141 |
+
mode='lines',
|
142 |
+
name="Total Power Consumption (MW)",
|
143 |
+
line=dict(color="red")
|
144 |
+
))
|
145 |
+
fig.add_trace(go.Scatter(
|
146 |
+
x=data["timestamp"],
|
147 |
+
y=data["grid_generation_mw"],
|
148 |
+
mode='lines',
|
149 |
+
name="Grid Generation (MW)",
|
150 |
+
line=dict(color="green")
|
151 |
+
))
|
152 |
+
fig.add_trace(go.Scatter(
|
153 |
+
x=data["timestamp"],
|
154 |
+
y=data["storage_utilization_mw"],
|
155 |
+
mode='lines',
|
156 |
+
name="Storage Utilization (MW)",
|
157 |
+
line=dict(color="blue")
|
158 |
+
))
|
159 |
+
fig.update_layout(title="Power and Energy Trends", xaxis_title="Time", yaxis_title="Power (MW)")
|
160 |
st.plotly_chart(fig)
|
161 |
|
162 |
+
# Storage Tab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
with tabs[1]:
|
164 |
+
st.header("Energy Storage Overview")
|
165 |
+
storage_data = generate_storage_data()
|
166 |
+
|
167 |
+
st.write(f"**Total Energy Stored:** {storage_data['total_stored_kwh']} kWh")
|
168 |
+
|
169 |
+
# Circular storage breakdown
|
170 |
+
sources = ["Wind", "Solar", "Turbine"]
|
171 |
+
values = [storage_data["wind"], storage_data["solar"], storage_data["turbine"]]
|
172 |
+
|
173 |
+
fig = go.Figure(data=[go.Pie(labels=sources, values=values, hole=.4)])
|
174 |
+
fig.update_layout(title="Energy Storage Breakdown")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
st.plotly_chart(fig)
|
176 |
|
177 |
+
# Electricity Trade Management Tab
|
178 |
with tabs[2]:
|
179 |
+
st.header("Electricity Trade Management")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
+
# Sample trade data
|
182 |
+
trade_data = {
|
183 |
+
"Country": ["Country A", "Country B", "Country C"],
|
184 |
+
"Energy Exported (MW)": [50, 30, 70],
|
185 |
+
"Energy Imported (MW)": [20, 40, 10],
|
186 |
+
}
|
187 |
+
trade_df = pd.DataFrame(trade_data)
|
188 |
|
189 |
+
st.subheader("Trade Details")
|
190 |
+
st.write(trade_df)
|
191 |
|
192 |
+
# Visualization
|
193 |
+
fig = go.Figure()
|
194 |
+
fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Exported (MW)"], name="Exported", marker_color='purple'))
|
195 |
+
fig.add_trace(go.Bar(x=trade_df["Country"], y=trade_df["Energy Imported (MW)"], name="Imported", marker_color='orange'))
|
196 |
+
fig.update_layout(title="Energy Trade", barmode='group')
|
197 |
+
st.plotly_chart(fig)
|
198 |
|
199 |
|
200 |
|