rehanafzal commited on
Commit
e849fe2
·
verified ·
1 Parent(s): 0b49a97

Update app_backend.py

Browse files
Files changed (1) hide show
  1. app_backend.py +80 -35
app_backend.py CHANGED
@@ -45,45 +45,45 @@
45
  # code2
46
 
47
 
48
- import pandas as pd
49
- import numpy as np
50
- from datetime import datetime, timedelta
51
- import requests
52
 
53
- # Function to fetch real-time weather data
54
- def fetch_weather(api_key, location):
55
- url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric"
56
- response = requests.get(url).json()
57
- if response["cod"] == 200:
58
- return {
59
- "temperature": response["main"]["temp"],
60
- "wind_speed": response["wind"]["speed"],
61
- "weather": response["weather"][0]["description"]
62
- }
63
- return None
64
 
65
- # Generate synthetic data
66
- def generate_synthetic_data():
67
- time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
68
- return pd.DataFrame({
69
- "timestamp": time_index,
70
- "total_power_consumption_mw": np.random.randint(200, 500, len(time_index)),
71
- "grid_generation_mw": np.random.randint(100, 300, len(time_index)),
72
- "storage_utilization_mw": np.random.randint(50, 150, len(time_index)),
73
- })
74
 
75
- # Generate storage data
76
- def generate_storage_data():
77
- return {
78
- "wind": 5,
79
- "solar": 7,
80
- "turbine": 10,
81
- "total_stored_kwh": 2000
82
- }
83
 
84
- # Export functions for use in Streamlit
85
- if __name__ == "__main__":
86
- print("Backend ready!")
87
 
88
 
89
  # code 3
@@ -141,3 +141,48 @@ if __name__ == "__main__":
141
  # if __name__ == "__main__":
142
  # print("Backend ready for enhanced dashboard!")
143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  # code2
46
 
47
 
48
+ # import pandas as pd
49
+ # import numpy as np
50
+ # from datetime import datetime, timedelta
51
+ # import requests
52
 
53
+ # # Function to fetch real-time weather data
54
+ # def fetch_weather(api_key, location):
55
+ # url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric"
56
+ # response = requests.get(url).json()
57
+ # if response["cod"] == 200:
58
+ # return {
59
+ # "temperature": response["main"]["temp"],
60
+ # "wind_speed": response["wind"]["speed"],
61
+ # "weather": response["weather"][0]["description"]
62
+ # }
63
+ # return None
64
 
65
+ # # Generate synthetic data
66
+ # def generate_synthetic_data():
67
+ # time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
68
+ # return pd.DataFrame({
69
+ # "timestamp": time_index,
70
+ # "total_power_consumption_mw": np.random.randint(200, 500, len(time_index)),
71
+ # "grid_generation_mw": np.random.randint(100, 300, len(time_index)),
72
+ # "storage_utilization_mw": np.random.randint(50, 150, len(time_index)),
73
+ # })
74
 
75
+ # # Generate storage data
76
+ # def generate_storage_data():
77
+ # return {
78
+ # "wind": 5,
79
+ # "solar": 7,
80
+ # "turbine": 10,
81
+ # "total_stored_kwh": 2000
82
+ # }
83
 
84
+ # # Export functions for use in Streamlit
85
+ # if __name__ == "__main__":
86
+ # print("Backend ready!")
87
 
88
 
89
  # code 3
 
141
  # if __name__ == "__main__":
142
  # print("Backend ready for enhanced dashboard!")
143
 
144
+
145
+
146
+
147
+
148
+ # code 4
149
+
150
+
151
+ import pandas as pd
152
+ import numpy as np
153
+ import requests
154
+ from datetime import datetime
155
+
156
+ # Function to fetch real-time weather data
157
+ def fetch_weather(api_key, location):
158
+ url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric"
159
+ response = requests.get(url).json()
160
+ if response["cod"] == 200:
161
+ return {
162
+ "temperature": response["main"]["temp"],
163
+ "wind_speed": response["wind"]["speed"],
164
+ "weather": response["weather"][0]["description"]
165
+ }
166
+ return None
167
+
168
+ # Generate synthetic grid data
169
+ def generate_synthetic_data():
170
+ time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
171
+ return pd.DataFrame({
172
+ "timestamp": time_index,
173
+ "load_demand_kwh": np.random.randint(200, 500, len(time_index)),
174
+ "solar_output_kw": np.random.randint(50, 150, len(time_index)),
175
+ "wind_output_kw": np.random.randint(30, 120, len(time_index)),
176
+ "grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index))
177
+ })
178
+
179
+ # Load optimization recommendation
180
+ def optimize_load(demand, solar, wind):
181
+ renewable_supply = solar + wind
182
+ if renewable_supply >= demand:
183
+ return "Grid Stable"
184
+ return "Use Backup or Adjust Load"
185
+
186
+ if __name__ == "__main__":
187
+ print("Backend ready!")
188
+