Spaces:
Sleeping
Sleeping
Update app_backend.py
Browse files- app_backend.py +80 -35
app_backend.py
CHANGED
@@ -45,45 +45,45 @@
|
|
45 |
# code2
|
46 |
|
47 |
|
48 |
-
import pandas as pd
|
49 |
-
import numpy as np
|
50 |
-
from datetime import datetime, timedelta
|
51 |
-
import requests
|
52 |
|
53 |
-
# Function to fetch real-time weather data
|
54 |
-
def fetch_weather(api_key, location):
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
|
65 |
-
# Generate synthetic data
|
66 |
-
def generate_synthetic_data():
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
|
75 |
-
# Generate storage data
|
76 |
-
def generate_storage_data():
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
|
84 |
-
# Export functions for use in Streamlit
|
85 |
-
if __name__ == "__main__":
|
86 |
-
|
87 |
|
88 |
|
89 |
# code 3
|
@@ -141,3 +141,48 @@ if __name__ == "__main__":
|
|
141 |
# if __name__ == "__main__":
|
142 |
# print("Backend ready for enhanced dashboard!")
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
# code2
|
46 |
|
47 |
|
48 |
+
# import pandas as pd
|
49 |
+
# import numpy as np
|
50 |
+
# from datetime import datetime, timedelta
|
51 |
+
# import requests
|
52 |
|
53 |
+
# # Function to fetch real-time weather data
|
54 |
+
# def fetch_weather(api_key, location):
|
55 |
+
# url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric"
|
56 |
+
# response = requests.get(url).json()
|
57 |
+
# if response["cod"] == 200:
|
58 |
+
# return {
|
59 |
+
# "temperature": response["main"]["temp"],
|
60 |
+
# "wind_speed": response["wind"]["speed"],
|
61 |
+
# "weather": response["weather"][0]["description"]
|
62 |
+
# }
|
63 |
+
# return None
|
64 |
|
65 |
+
# # Generate synthetic data
|
66 |
+
# def generate_synthetic_data():
|
67 |
+
# time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
|
68 |
+
# return pd.DataFrame({
|
69 |
+
# "timestamp": time_index,
|
70 |
+
# "total_power_consumption_mw": np.random.randint(200, 500, len(time_index)),
|
71 |
+
# "grid_generation_mw": np.random.randint(100, 300, len(time_index)),
|
72 |
+
# "storage_utilization_mw": np.random.randint(50, 150, len(time_index)),
|
73 |
+
# })
|
74 |
|
75 |
+
# # Generate storage data
|
76 |
+
# def generate_storage_data():
|
77 |
+
# return {
|
78 |
+
# "wind": 5,
|
79 |
+
# "solar": 7,
|
80 |
+
# "turbine": 10,
|
81 |
+
# "total_stored_kwh": 2000
|
82 |
+
# }
|
83 |
|
84 |
+
# # Export functions for use in Streamlit
|
85 |
+
# if __name__ == "__main__":
|
86 |
+
# print("Backend ready!")
|
87 |
|
88 |
|
89 |
# code 3
|
|
|
141 |
# if __name__ == "__main__":
|
142 |
# print("Backend ready for enhanced dashboard!")
|
143 |
|
144 |
+
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
# code 4
|
149 |
+
|
150 |
+
|
151 |
+
import pandas as pd
|
152 |
+
import numpy as np
|
153 |
+
import requests
|
154 |
+
from datetime import datetime
|
155 |
+
|
156 |
+
# Function to fetch real-time weather data
|
157 |
+
def fetch_weather(api_key, location):
|
158 |
+
url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric"
|
159 |
+
response = requests.get(url).json()
|
160 |
+
if response["cod"] == 200:
|
161 |
+
return {
|
162 |
+
"temperature": response["main"]["temp"],
|
163 |
+
"wind_speed": response["wind"]["speed"],
|
164 |
+
"weather": response["weather"][0]["description"]
|
165 |
+
}
|
166 |
+
return None
|
167 |
+
|
168 |
+
# Generate synthetic grid data
|
169 |
+
def generate_synthetic_data():
|
170 |
+
time_index = pd.date_range(start=datetime.now(), periods=24, freq="H")
|
171 |
+
return pd.DataFrame({
|
172 |
+
"timestamp": time_index,
|
173 |
+
"load_demand_kwh": np.random.randint(200, 500, len(time_index)),
|
174 |
+
"solar_output_kw": np.random.randint(50, 150, len(time_index)),
|
175 |
+
"wind_output_kw": np.random.randint(30, 120, len(time_index)),
|
176 |
+
"grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index))
|
177 |
+
})
|
178 |
+
|
179 |
+
# Load optimization recommendation
|
180 |
+
def optimize_load(demand, solar, wind):
|
181 |
+
renewable_supply = solar + wind
|
182 |
+
if renewable_supply >= demand:
|
183 |
+
return "Grid Stable"
|
184 |
+
return "Use Backup or Adjust Load"
|
185 |
+
|
186 |
+
if __name__ == "__main__":
|
187 |
+
print("Backend ready!")
|
188 |
+
|