Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,175 +1,109 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
# # Constants
|
7 |
-
# API_KEY = "84e26811a314599e940f343b4d5894a7"
|
8 |
-
# LOCATION = "Pakistan"
|
9 |
-
|
10 |
-
# # Sidebar
|
11 |
-
# st.sidebar.title("Smart Grid Dashboard")
|
12 |
-
# location = st.sidebar.text_input("Enter Location", LOCATION)
|
13 |
-
|
14 |
-
# # Fetch and display weather data
|
15 |
-
# weather = fetch_weather(API_KEY, location)
|
16 |
-
# if weather:
|
17 |
-
# st.sidebar.write(f"Temperature: {weather['temperature']} °C")
|
18 |
-
# st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
|
19 |
-
# st.sidebar.write(f"Weather: {weather['weather']}")
|
20 |
-
|
21 |
-
# # Main dashboard with tabs
|
22 |
-
# tabs = st.tabs(["Home", "Storage", "Trading"])
|
23 |
-
|
24 |
-
# with tabs[0]:
|
25 |
-
# st.title("Real-Time Smart Grid Dashboard")
|
26 |
-
|
27 |
-
# # Generate synthetic data
|
28 |
-
# data = generate_synthetic_data()
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
# labels={"value": "Energy (kWh)", "variable": "Energy Source"})
|
34 |
-
# st.plotly_chart(fig)
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
# st.bar_chart(grid_health_counts)
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
# st.write(f"Solar Output: {current_solar} kW")
|
50 |
-
# st.write(f"Wind Output: {current_wind} kW")
|
51 |
-
# st.write(f"Recommendation: {recommendation}")
|
52 |
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
-
# st.subheader(f"Total Energy Stored: {total_storage} kWh")
|
59 |
|
60 |
-
#
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
# })
|
66 |
-
# st.bar_chart(energy_sources.set_index("Source"))
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
-
|
|
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
# storage_df = pd.DataFrame(storage_data)
|
78 |
-
# fig = px.pie(storage_df, names="Source", values="Energy", title="Energy Storage Sources")
|
79 |
-
# st.plotly_chart(fig)
|
80 |
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
# energy_cubes = pd.DataFrame({
|
87 |
-
# "Country": ["China", "Sri Lanka", "Bangladesh"],
|
88 |
-
# "Energy (kWh)": [100, 200, 300],
|
89 |
-
# "Shareable": [True, True, False]
|
90 |
-
# })
|
91 |
|
92 |
-
#
|
93 |
-
|
94 |
-
|
95 |
|
96 |
-
#
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
101 |
|
|
|
|
|
|
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
|
|
|
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
|
|
|
|
|
|
106 |
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
|
109 |
|
110 |
|
111 |
|
112 |
-
import streamlit as st
|
113 |
-
import pandas as pd
|
114 |
-
import plotly.express as px
|
115 |
-
from app_backend import fetch_weather, generate_synthetic_data, optimize_load
|
116 |
|
117 |
-
# Constants
|
118 |
-
API_KEY = "84e26811a314599e940f343b4d5894a7"
|
119 |
-
LOCATION = "Pakistan"
|
120 |
|
121 |
-
# Sidebar
|
122 |
-
st.sidebar.title("Smart Grid Dashboard")
|
123 |
-
location = st.sidebar.text_input("Enter Location", LOCATION)
|
124 |
|
125 |
-
# Fetch and display weather data
|
126 |
-
weather = fetch_weather(API_KEY, location)
|
127 |
-
if weather:
|
128 |
-
st.sidebar.write(f"Temperature: {weather['temperature']} °C")
|
129 |
-
st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
|
130 |
-
st.sidebar.write(f"Weather: {weather['weather']}")
|
131 |
|
132 |
-
# Main dashboard
|
133 |
-
st.title("Real-Time Smart Grid Dashboard")
|
134 |
-
|
135 |
-
# Generate synthetic data
|
136 |
-
data = generate_synthetic_data()
|
137 |
-
|
138 |
-
# Plot total power consumption (load demand) in MW
|
139 |
-
fig = px.line(data, x="timestamp", y="load_demand_mw", title="Power Consumption (MW) Over Time")
|
140 |
-
st.plotly_chart(fig)
|
141 |
-
|
142 |
-
# Plot renewable energy generation in MW (solar + wind) on the graph
|
143 |
-
fig = px.bar(
|
144 |
-
data,
|
145 |
-
x="timestamp",
|
146 |
-
y=["solar_output_mw", "wind_output_mw"],
|
147 |
-
title="Renewable Energy Generation (MW)",
|
148 |
-
labels={"value": "Power (MW)", "variable": "Energy Source"}
|
149 |
-
)
|
150 |
-
st.plotly_chart(fig)
|
151 |
-
|
152 |
-
# Show battery storage in kWh
|
153 |
-
fig = px.line(data, x="timestamp", y="battery_storage_kwh", title="Battery Storage (kWh) Over Time")
|
154 |
-
st.plotly_chart(fig)
|
155 |
-
|
156 |
-
# Grid health
|
157 |
-
st.subheader("Grid Health Overview")
|
158 |
-
grid_health_counts = data["grid_health"].value_counts()
|
159 |
-
st.bar_chart(grid_health_counts)
|
160 |
-
|
161 |
-
# Optimization recommendations
|
162 |
-
current_demand = data["load_demand_mw"].iloc[-1] # Load demand in MW
|
163 |
-
current_solar = data["solar_output_mw"].iloc[-1] # Solar output in MW
|
164 |
-
current_wind = data["wind_output_mw"].iloc[-1] # Wind output in MW
|
165 |
-
recommendation = optimize_load(current_demand, current_solar, current_wind)
|
166 |
-
|
167 |
-
st.subheader("Recommendations")
|
168 |
-
st.write(f"Current Load Demand: {current_demand} MW")
|
169 |
-
st.write(f"Solar Output: {current_solar} MW")
|
170 |
-
st.write(f"Wind Output: {current_wind} MW")
|
171 |
-
st.write(f"Recommendation: {recommendation}")
|
172 |
-
|
173 |
-
# Electricity Trade Management Tab
|
174 |
-
st.subheader("Electricity Trade Management")
|
175 |
-
st.write("Manage energy trading here.")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
from app_backend import fetch_weather, generate_synthetic_data, optimize_load
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Constants
|
7 |
+
API_KEY = "84e26811a314599e940f343b4d5894a7"
|
8 |
+
LOCATION = "Pakistan"
|
|
|
|
|
9 |
|
10 |
+
# Sidebar
|
11 |
+
st.sidebar.title("Smart Grid Dashboard")
|
12 |
+
location = st.sidebar.text_input("Enter Location", LOCATION)
|
|
|
13 |
|
14 |
+
# Fetch and display weather data
|
15 |
+
weather = fetch_weather(API_KEY, location)
|
16 |
+
if weather:
|
17 |
+
st.sidebar.write(f"Temperature: {weather['temperature']} °C")
|
18 |
+
st.sidebar.write(f"Wind Speed: {weather['wind_speed']} m/s")
|
19 |
+
st.sidebar.write(f"Weather: {weather['weather']}")
|
20 |
|
21 |
+
# Main dashboard with tabs
|
22 |
+
tabs = st.tabs(["Home", "Storage", "Trading"])
|
|
|
|
|
|
|
23 |
|
24 |
+
with tabs[0]:
|
25 |
+
st.title("Real-Time Smart Grid Dashboard")
|
26 |
|
27 |
+
# Generate synthetic data
|
28 |
+
data = generate_synthetic_data()
|
|
|
29 |
|
30 |
+
# Plot total consumption, grid generation, and storage usage
|
31 |
+
fig = px.line(data, x="timestamp", y=["total_consumption_kwh", "grid_generation_kwh", "storage_usage_kwh"],
|
32 |
+
title="Energy Consumption, Generation, and Storage Usage Over Time",
|
33 |
+
labels={"value": "Energy (kWh)", "variable": "Energy Source"})
|
34 |
+
st.plotly_chart(fig)
|
|
|
|
|
35 |
|
36 |
+
# Grid health overview
|
37 |
+
st.subheader("Grid Health Overview")
|
38 |
+
grid_health_counts = data["grid_health"].value_counts()
|
39 |
+
st.bar_chart(grid_health_counts)
|
40 |
|
41 |
+
# Optimization recommendations
|
42 |
+
current_demand = data["total_consumption_kwh"].iloc[-1]
|
43 |
+
current_solar = data["solar_output_kw"].iloc[-1]
|
44 |
+
current_wind = data["wind_output_kw"].iloc[-1]
|
45 |
+
recommendation = optimize_load(current_demand, current_solar, current_wind)
|
|
|
|
|
|
|
46 |
|
47 |
+
st.subheader("Recommendations")
|
48 |
+
st.write(f"Current Load Demand: {current_demand} kWh")
|
49 |
+
st.write(f"Solar Output: {current_solar} kW")
|
50 |
+
st.write(f"Wind Output: {current_wind} kW")
|
51 |
+
st.write(f"Recommendation: {recommendation}")
|
52 |
|
53 |
+
with tabs[1]:
|
54 |
+
st.title("Energy Storage Overview")
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Total energy stored
|
57 |
+
total_storage = 500 # Example of total energy storage
|
58 |
+
st.subheader(f"Total Energy Stored: {total_storage} kWh")
|
59 |
|
60 |
+
# Energy storage contribution from different sources
|
61 |
+
st.subheader("Energy Storage Contributions")
|
62 |
+
energy_sources = pd.DataFrame({
|
63 |
+
"Source": ["Wind", "Solar", "Turbine"],
|
64 |
+
"Energy (kW/min)": [5, 7, 10]
|
65 |
+
})
|
66 |
+
st.bar_chart(energy_sources.set_index("Source"))
|
67 |
|
68 |
+
# Show energy storage status with a rounded circle
|
69 |
+
st.subheader("Energy Storage Circle")
|
70 |
+
st.markdown("Energy storage is a combination of contributions from different renewable sources.")
|
71 |
|
72 |
+
# Visualization of energy storage circle using Plotly
|
73 |
+
storage_data = {
|
74 |
+
"Source": ["Wind", "Solar", "Turbine"],
|
75 |
+
"Energy": [5, 7, 10],
|
76 |
+
}
|
77 |
+
storage_df = pd.DataFrame(storage_data)
|
78 |
+
fig = px.pie(storage_df, names="Source", values="Energy", title="Energy Storage Sources")
|
79 |
+
st.plotly_chart(fig)
|
80 |
|
81 |
+
with tabs[2]:
|
82 |
+
st.title("Energy Trading Overview")
|
83 |
|
84 |
+
# Energy cubes
|
85 |
+
st.subheader("Energy Cubes Stored")
|
86 |
+
energy_cubes = pd.DataFrame({
|
87 |
+
"Country": ["China", "Sri Lanka", "Bangladesh"],
|
88 |
+
"Energy (kWh)": [100, 200, 300],
|
89 |
+
"Shareable": [True, True, False]
|
90 |
+
})
|
91 |
|
92 |
+
# Displaying the energy cubes in a grid
|
93 |
+
st.write("Stored energy can be shared with other countries.")
|
94 |
+
st.dataframe(energy_cubes)
|
95 |
|
96 |
+
# Visualization of energy that can be shared
|
97 |
+
st.subheader("Energy Trading Visualization")
|
98 |
+
st.markdown("The following energy amounts are available for sharing with different countries.")
|
99 |
+
trading_fig = px.bar(energy_cubes, x="Country", y="Energy (kWh)", color="Shareable", title="Energy Trading")
|
100 |
+
st.plotly_chart(trading_fig)
|
101 |
|
102 |
|
103 |
|
104 |
|
105 |
|
|
|
|
|
|
|
|
|
106 |
|
|
|
|
|
|
|
107 |
|
|
|
|
|
|
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|