# import pandas as pd # import numpy as np # import plotly.express as px # from datetime import datetime, timedelta # import requests # # Function to fetch real-time weather data # def fetch_weather(api_key, location): # url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric" # response = requests.get(url).json() # if response["cod"] == 200: # return { # "temperature": response["main"]["temp"], # "wind_speed": response["wind"]["speed"], # "weather": response["weather"][0]["description"] # } # return None # # Generate synthetic grid data # def generate_synthetic_data(): # time_index = pd.date_range(start=datetime.now(), periods=24, freq="H") # return pd.DataFrame({ # "timestamp": time_index, # "total_consumption_kwh": np.random.randint(200, 500, len(time_index)), # "grid_generation_kwh": np.random.randint(150, 400, len(time_index)), # "storage_usage_kwh": np.random.randint(50, 150, len(time_index)), # "solar_output_kw": np.random.randint(50, 150, len(time_index)), # "wind_output_kw": np.random.randint(30, 120, len(time_index)), # "grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index)) # }) # # Load optimization recommendation # def optimize_load(demand, solar, wind): # renewable_supply = solar + wind # if renewable_supply >= demand: # return "Grid Stable" # return "Use Backup or Adjust Load" # # Export functions for use in Streamlit # if __name__ == "__main__": # print("Backend ready!") import pandas as pd import numpy as np import plotly.express as px from datetime import datetime, timedelta import requests # Function to fetch real-time weather data def fetch_weather(api_key, location): url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={api_key}&units=metric" response = requests.get(url).json() if response["cod"] == 200: return { "temperature": response["main"]["temp"], "wind_speed": response["wind"]["speed"], "weather": response["weather"][0]["description"] } return None # Generate synthetic grid data in MW (for generation) and kWh (for load) def generate_synthetic_data(): time_index = pd.date_range(start=datetime.now(), periods=24, freq="H") return pd.DataFrame({ "timestamp": time_index, "load_demand_mw": np.random.uniform(0.2, 0.5, len(time_index)), # Load demand in MW "solar_output_mw": np.random.uniform(0.05, 0.15, len(time_index)), # Solar output in MW "wind_output_mw": np.random.uniform(0.03, 0.12, len(time_index)), # Wind output in MW "battery_storage_kwh": np.random.randint(100, 500, len(time_index)), # Battery storage in kWh "grid_health": np.random.choice(["Good", "Moderate", "Critical"], len(time_index)) }) # Load optimization recommendation in MW def optimize_load(demand, solar, wind): renewable_supply = solar + wind if renewable_supply >= demand: return "Grid Stable" return "Use Backup or Adjust Load" # Export functions for use in Streamlit if __name__ == "__main__": print("Backend ready!")