Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from groq import Groq
|
3 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain_community.vectorstores import FAISS
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from PyPDF2 import PdfReader
|
7 |
+
import streamlit as st
|
8 |
+
from tempfile import NamedTemporaryFile
|
9 |
+
|
10 |
+
# Initialize Groq client
|
11 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
12 |
+
|
13 |
+
# Function to extract text from a PDF
|
14 |
+
def extract_text_from_pdf(pdf_file_path):
|
15 |
+
pdf_reader = PdfReader(pdf_file_path)
|
16 |
+
text = ""
|
17 |
+
for page in pdf_reader.pages:
|
18 |
+
text += page.extract_text()
|
19 |
+
return text
|
20 |
+
|
21 |
+
# Function to split text into chunks
|
22 |
+
def chunk_text(text, chunk_size=500, chunk_overlap=50):
|
23 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
24 |
+
chunk_size=chunk_size, chunk_overlap=chunk_overlap
|
25 |
+
)
|
26 |
+
return text_splitter.split_text(text)
|
27 |
+
|
28 |
+
# Function to create embeddings and store them in FAISS
|
29 |
+
def create_embeddings_and_store(chunks):
|
30 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
31 |
+
vector_db = FAISS.from_texts(chunks, embedding=embeddings)
|
32 |
+
return vector_db
|
33 |
+
|
34 |
+
# Function to query the vector database and interact with Groq
|
35 |
+
def query_vector_db(query, vector_db):
|
36 |
+
# Retrieve relevant documents
|
37 |
+
docs = vector_db.similarity_search(query, k=3)
|
38 |
+
context = "\n".join([doc.page_content for doc in docs])
|
39 |
+
|
40 |
+
# Interact with Groq API
|
41 |
+
chat_completion = client.chat.completions.create(
|
42 |
+
messages=[
|
43 |
+
{"role": "system", "content": f"Use the following context:\n{context}"},
|
44 |
+
{"role": "user", "content": query},
|
45 |
+
],
|
46 |
+
model="llama3-8b-8192",
|
47 |
+
)
|
48 |
+
return chat_completion.choices[0].message.content
|
49 |
+
|
50 |
+
# Streamlit app
|
51 |
+
st.title("Interactive PDF Reader and Chat")
|
52 |
+
|
53 |
+
# Upload PDF
|
54 |
+
uploaded_file = st.file_uploader("Upload a PDF document", type=["pdf"])
|
55 |
+
|
56 |
+
if uploaded_file:
|
57 |
+
with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
|
58 |
+
temp_file.write(uploaded_file.read())
|
59 |
+
pdf_path = temp_file.name
|
60 |
+
|
61 |
+
# Extract text, chunk it, and create embeddings
|
62 |
+
text = extract_text_from_pdf(pdf_path)
|
63 |
+
chunks = chunk_text(text)
|
64 |
+
vector_db = create_embeddings_and_store(chunks)
|
65 |
+
|
66 |
+
# State management for the chat
|
67 |
+
if "chat_history" not in st.session_state:
|
68 |
+
st.session_state.chat_history = []
|
69 |
+
|
70 |
+
# Display chat history
|
71 |
+
for i, chat in enumerate(st.session_state.chat_history):
|
72 |
+
st.write(f"**Query {i+1}:** {chat['query']}")
|
73 |
+
st.write(f"**Response:** {chat['response']}")
|
74 |
+
st.write("---")
|
75 |
+
|
76 |
+
# Add new query input dynamically
|
77 |
+
if "query_count" not in st.session_state:
|
78 |
+
st.session_state.query_count = 1
|
79 |
+
|
80 |
+
query_key = f"query_{st.session_state.query_count}"
|
81 |
+
user_query = st.text_input(f"Enter Query {st.session_state.query_count}:", key=query_key)
|
82 |
+
|
83 |
+
if user_query:
|
84 |
+
# Generate response
|
85 |
+
response = query_vector_db(user_query, vector_db)
|
86 |
+
|
87 |
+
# Append query and response to the chat history
|
88 |
+
st.session_state.chat_history.append({"query": user_query, "response": response})
|
89 |
+
|
90 |
+
# Increment query count for the next input box
|
91 |
+
st.session_state.query_count += 1
|
92 |
+
|
93 |
+
# Rerun to show the updated UI
|
94 |
+
st.experimental_rerun()
|