import os from groq import Groq from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain.text_splitter import RecursiveCharacterTextSplitter from PyPDF2 import PdfReader import streamlit as st from tempfile import NamedTemporaryFile # Initialize Groq client # client = Groq(api_key=os.environ.get("GROQ_API_KEY")) client = Groq(api_key=os.getenv("Groq_api_key")) # Function to extract text from a PDF def extract_text_from_pdf(pdf_file_path): pdf_reader = PdfReader(pdf_file_path) text = "" for page in pdf_reader.pages: text += page.extract_text() return text # Function to split text into chunks def chunk_text(text, chunk_size=500, chunk_overlap=50): text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) return text_splitter.split_text(text) # Function to create embeddings and store them in FAISS def create_embeddings_and_store(chunks): embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") vector_db = FAISS.from_texts(chunks, embedding=embeddings) return vector_db # Function to query the vector database and interact with Groq def query_vector_db(query, vector_db): # Retrieve relevant documents docs = vector_db.similarity_search(query, k=3) context = "\n".join([doc.page_content for doc in docs]) # Interact with Groq API chat_completion = client.chat.completions.create( messages=[ {"role": "system", "content": f"Use the following context:\n{context}"}, {"role": "user", "content": query}, ], model="llama3-8b-8192", ) return chat_completion.choices[0].message.content # Streamlit app st.title("Pdf reading AI Application") # Upload PDF uploaded_file = st.file_uploader("Upload a PDF document", type=["pdf"]) if uploaded_file: with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file: temp_file.write(uploaded_file.read()) pdf_path = temp_file.name # Extract text text = extract_text_from_pdf(pdf_path) # st.write("PDF Text Extracted Successfully!") # Chunk text chunks = chunk_text(text) # st.write("Text Chunked Successfully!") # Generate embeddings and store in FAISS vector_db = create_embeddings_and_store(chunks) # st.write("Embeddings Generated and Stored Successfully!") # Interactive chat section st.write("Chat with Your Documents") # State management for chat history if "chat_history" not in st.session_state: st.session_state.chat_history = [] # User query input user_query = st.text_input("Enter your query:", key="user_query") if st.button("Submit Query"): if user_query: # Get response from the model response = query_vector_db(user_query, vector_db) # Append the query and response to the chat history st.session_state.chat_history.append({"query": user_query, "response": response}) # Display chat history for chat in st.session_state.chat_history: st.write(f"**User Query:** {chat['query']}") st.write(f"**Response:** {chat['response']}") st.write("---")