remotewith commited on
Commit
a739701
·
verified ·
1 Parent(s): a919e44

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +75 -0
  2. base_bat_ball.pth +3 -0
  3. model.py +26 -0
  4. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### 1. Imports and class names setup ###
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+
6
+ from model import create_effnetb2_model
7
+ from timeit import default_timer as timer
8
+ from typing import Tuple, Dict
9
+
10
+ # Setup class names
11
+ class_names = ["baseball", "cricket", "football"]
12
+
13
+ ### 2. Model and transforms preparation ###
14
+
15
+ # Create EffNetB2 model
16
+ effnetb2, effnetb2_transforms = create_effnetb2_model(
17
+ num_classes=3, # len(class_names) would also work
18
+ )
19
+
20
+ # Load saved weights
21
+ effnetb2.load_state_dict(
22
+ torch.load(
23
+ f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
24
+ map_location=torch.device("cpu"), # load to CPU
25
+ )
26
+ )
27
+
28
+ ### 3. Predict function ###
29
+
30
+ # Create predict function
31
+ def predict(img) -> Tuple[Dict, float]:
32
+ """Transforms and performs a prediction on img and returns prediction and time taken.
33
+ """
34
+ # Start the timer
35
+ start_time = timer()
36
+
37
+ # Transform the target image and add a batch dimension
38
+ img = effnetb2_transforms(img).unsqueeze(0)
39
+
40
+ # Put model into evaluation mode and turn on inference mode
41
+ effnetb2.eval()
42
+ with torch.inference_mode():
43
+ # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
44
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
45
+
46
+ # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
47
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
48
+
49
+ # Calculate the prediction time
50
+ pred_time = round(timer() - start_time, 5)
51
+
52
+ # Return the prediction dictionary and prediction time
53
+ return pred_labels_and_probs, pred_time
54
+
55
+ ### 4. Gradio app ###
56
+
57
+ # Create title, description and article strings
58
+ title = "Base Bat Ball"
59
+ description = "An EfficientNetB2 feature extractor computer vision model to classify images as baseball , cricket and football."
60
+
61
+ # Create examples list from "examples/" directory
62
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
63
+
64
+ # Create the Gradio demo
65
+ demo = gr.Interface(fn=predict, # mapping function from input to output
66
+ inputs=gr.Image(type="pil"), # what are the inputs?
67
+ outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs?
68
+ gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
69
+ # Create examples list from "examples/" directory
70
+ examples=example_list,
71
+ title=title,
72
+ description=description)
73
+
74
+ # Launch the demo!
75
+ demo.launch()
base_bat_ball.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caa8bdb5742873af42df5f22526c596d2f70c367d0938870e7b5ea6f0fd7bd36
3
+ size 31269309
model.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+
4
+ from torch import nn
5
+
6
+
7
+ def create_effnetb2_model(num_classes:int=3,
8
+ seed:int=42):
9
+
10
+ # Create EffNetB2 pretrained weights, transforms and model
11
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
12
+ transforms = weights.transforms()
13
+ model = torchvision.models.efficientnet_b2(weights=weights)
14
+
15
+ # Freeze all layers in base model
16
+ for param in model.parameters():
17
+ param.requires_grad = False
18
+
19
+ # Change classifier head with random seed for reproducibility
20
+ torch.manual_seed(seed)
21
+ model.classifier = nn.Sequential(
22
+ nn.Dropout(p=0.3, inplace=True),
23
+ nn.Linear(in_features=1408, out_features=num_classes),
24
+ )
25
+
26
+ return model, transforms
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+
2
+ torch==1.12.0
3
+ torchvision==0.13.0
4
+ gradio==3.1.4