remotewith commited on
Commit
fe075ed
·
1 Parent(s): 304fe97

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -11
app.py CHANGED
@@ -16,17 +16,14 @@ import contextlib
16
 
17
  from sklearn.cluster import AgglomerativeClustering
18
  import numpy as np
19
-
20
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
21
 
22
  model = whisper.load_model("large-v2")
23
  embedding_model = PretrainedSpeakerEmbedding(
24
  "speechbrain/spkrec-ecapa-voxceleb",
25
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
26
- )
27
 
28
- output=""
29
- ######################################################
30
  def audio_to_text(audio, num_speakers):
31
  path, error = convert_to_wav(audio)
32
  if error is not None:
@@ -36,7 +33,6 @@ def audio_to_text(audio, num_speakers):
36
  if duration > 4 * 60 * 60:
37
  return "Audio duration too long"
38
 
39
-
40
  result = model.transcribe(path)
41
  segments = result["segments"]
42
 
@@ -48,7 +44,6 @@ def audio_to_text(audio, num_speakers):
48
  add_speaker_labels(segments, embeddings, num_speakers)
49
  global output
50
  output = get_output(segments)
51
- #short_sum=text_to_short_summary(str(output))
52
  return output
53
 
54
  def convert_to_wav(path):
@@ -100,10 +95,7 @@ def get_output(segments):
100
  output += '\n\n'
101
  output += segment["speaker"] + ' ' + str(time(segment["start"])) + '\n\n'
102
  output += segment["text"][1:] + ' '
103
-
104
- return output
105
-
106
- #########################################################################
107
 
108
 
109
  def text_to_short_summary():
 
16
 
17
  from sklearn.cluster import AgglomerativeClustering
18
  import numpy as np
19
+ optput=""
 
20
 
21
  model = whisper.load_model("large-v2")
22
  embedding_model = PretrainedSpeakerEmbedding(
23
  "speechbrain/spkrec-ecapa-voxceleb",
24
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
25
+ )
26
 
 
 
27
  def audio_to_text(audio, num_speakers):
28
  path, error = convert_to_wav(audio)
29
  if error is not None:
 
33
  if duration > 4 * 60 * 60:
34
  return "Audio duration too long"
35
 
 
36
  result = model.transcribe(path)
37
  segments = result["segments"]
38
 
 
44
  add_speaker_labels(segments, embeddings, num_speakers)
45
  global output
46
  output = get_output(segments)
 
47
  return output
48
 
49
  def convert_to_wav(path):
 
95
  output += '\n\n'
96
  output += segment["speaker"] + ' ' + str(time(segment["start"])) + '\n\n'
97
  output += segment["text"][1:] + ' '
98
+ return output
 
 
 
99
 
100
 
101
  def text_to_short_summary():