Spaces:
Sleeping
Sleeping
Commit
·
fe075ed
1
Parent(s):
304fe97
Update app.py
Browse files
app.py
CHANGED
@@ -16,17 +16,14 @@ import contextlib
|
|
16 |
|
17 |
from sklearn.cluster import AgglomerativeClustering
|
18 |
import numpy as np
|
19 |
-
|
20 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
21 |
|
22 |
model = whisper.load_model("large-v2")
|
23 |
embedding_model = PretrainedSpeakerEmbedding(
|
24 |
"speechbrain/spkrec-ecapa-voxceleb",
|
25 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
26 |
-
|
27 |
|
28 |
-
output=""
|
29 |
-
######################################################
|
30 |
def audio_to_text(audio, num_speakers):
|
31 |
path, error = convert_to_wav(audio)
|
32 |
if error is not None:
|
@@ -36,7 +33,6 @@ def audio_to_text(audio, num_speakers):
|
|
36 |
if duration > 4 * 60 * 60:
|
37 |
return "Audio duration too long"
|
38 |
|
39 |
-
|
40 |
result = model.transcribe(path)
|
41 |
segments = result["segments"]
|
42 |
|
@@ -48,7 +44,6 @@ def audio_to_text(audio, num_speakers):
|
|
48 |
add_speaker_labels(segments, embeddings, num_speakers)
|
49 |
global output
|
50 |
output = get_output(segments)
|
51 |
-
#short_sum=text_to_short_summary(str(output))
|
52 |
return output
|
53 |
|
54 |
def convert_to_wav(path):
|
@@ -100,10 +95,7 @@ def get_output(segments):
|
|
100 |
output += '\n\n'
|
101 |
output += segment["speaker"] + ' ' + str(time(segment["start"])) + '\n\n'
|
102 |
output += segment["text"][1:] + ' '
|
103 |
-
|
104 |
-
return output
|
105 |
-
|
106 |
-
#########################################################################
|
107 |
|
108 |
|
109 |
def text_to_short_summary():
|
|
|
16 |
|
17 |
from sklearn.cluster import AgglomerativeClustering
|
18 |
import numpy as np
|
19 |
+
optput=""
|
|
|
20 |
|
21 |
model = whisper.load_model("large-v2")
|
22 |
embedding_model = PretrainedSpeakerEmbedding(
|
23 |
"speechbrain/spkrec-ecapa-voxceleb",
|
24 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
25 |
+
)
|
26 |
|
|
|
|
|
27 |
def audio_to_text(audio, num_speakers):
|
28 |
path, error = convert_to_wav(audio)
|
29 |
if error is not None:
|
|
|
33 |
if duration > 4 * 60 * 60:
|
34 |
return "Audio duration too long"
|
35 |
|
|
|
36 |
result = model.transcribe(path)
|
37 |
segments = result["segments"]
|
38 |
|
|
|
44 |
add_speaker_labels(segments, embeddings, num_speakers)
|
45 |
global output
|
46 |
output = get_output(segments)
|
|
|
47 |
return output
|
48 |
|
49 |
def convert_to_wav(path):
|
|
|
95 |
output += '\n\n'
|
96 |
output += segment["speaker"] + ' ' + str(time(segment["start"])) + '\n\n'
|
97 |
output += segment["text"][1:] + ' '
|
98 |
+
return output
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
def text_to_short_summary():
|