Spaces:
Sleeping
Sleeping
File size: 4,879 Bytes
ce4c34e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
from torch.utils.data import DataLoader,Dataset
from PIL import Image
def double_convolution(in_channels, out_channels):
conv_op = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.ReLU(inplace=True)
)
return conv_op
class UNet(nn.Module):
def __init__(self, in_channels,out_channels):
super(UNet, self).__init__()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.down_convolution_1 = double_convolution(in_channels, 64)
self.down_convolution_2 = double_convolution(64, 128)
self.down_convolution_3 = double_convolution(128, 256)
self.down_convolution_4 = double_convolution(256, 512)
self.down_convolution_5 = double_convolution(512, 1024)
self.up_transpose_1 = nn.ConvTranspose2d(
in_channels=1024, out_channels=512,
kernel_size=2,
stride=2)
self.up_convolution_1 = double_convolution(1024, 512)
self.up_transpose_2 = nn.ConvTranspose2d(
in_channels=512, out_channels=256,
kernel_size=2,
stride=2)
self.up_convolution_2 = double_convolution(512, 256)
self.up_transpose_3 = nn.ConvTranspose2d(
in_channels=256, out_channels=128,
kernel_size=2,
stride=2)
self.up_convolution_3 = double_convolution(256, 128)
self.up_transpose_4 = nn.ConvTranspose2d(
in_channels=128, out_channels=64,
kernel_size=2,
stride=2)
self.up_convolution_4 = double_convolution(128, 64)
self.out = nn.Conv2d(
in_channels=64, out_channels=out_channels,
kernel_size=1
)
def forward(self, x):
down_1 = self.down_convolution_1(x)
down_2 = self.max_pool2d(down_1)
down_3 = self.down_convolution_2(down_2)
down_4 = self.max_pool2d(down_3)
down_5 = self.down_convolution_3(down_4)
down_6 = self.max_pool2d(down_5)
down_7 = self.down_convolution_4(down_6)
down_8 = self.max_pool2d(down_7)
down_9 = self.down_convolution_5(down_8)
up_1 = self.up_transpose_1(down_9)
x = self.up_convolution_1(torch.cat([down_7, up_1], 1))
up_2 = self.up_transpose_2(x)
x = self.up_convolution_2(torch.cat([down_5, up_2], 1))
up_3 = self.up_transpose_3(x)
x = self.up_convolution_3(torch.cat([down_3, up_3], 1))
up_4 = self.up_transpose_4(x)
x = self.up_convolution_4(torch.cat([down_1, up_4], 1))
out = self.out(x)
return out
class CustomDataset(Dataset):
def __init__(self, image_dir, mask_dir, transform=None):
self.image_dir = image_dir
self.mask_dir = mask_dir
self.transform = transform
self.image_filenames = os.listdir(image_dir)
self.mask_filenames = os.listdir(mask_dir)
def __len__(self):
return len(self.image_filenames)
def __getitem__(self , idx):
image_path = os.path.join(self.image_dir, self.image_filenames[idx])
mask_path = os.path.join(self.mask_dir, self.mask_filenames[idx])
image = Image.open(image_path).convert("RGB")
mask = Image.open(mask_path).convert("L")
if self.transform:
image = self.transform(image)
mask = self.transform(mask)
return image,mask
def train_model(model, dataloader, criterion, optimizer, num_epochs=25):
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
for images,masks in dataloader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, masks)
loss.backward()
optimizer.step()
running_loss +=loss.item()
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(dataloader):.4f}')
if __name__ == "__main__":
transform = transforms.Compose([
transforms.Resize((256,256)),
transforms.ToTensor(),
])
image_dir = "face-synthetics-glasses/train/images"
mask_dir = "face-synthetics-glasses/train/masks"
dataset = CustomDataset(image_dir , mask_dir ,transform=transform)
dataloader = DataLoader(dataset,batch_size=2,shuffle=True)
model = UNet(3,1)
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(),lr=0.001)
print("moving ahead")
# train_model(model,dataloader,criterion,optimizer,num_epochs=25)
# torch.save(model.state_dict(),"base_bat_ball.pth")
|