Spaces:
Running
Running
File size: 3,066 Bytes
0945ad6 6229c52 0945ad6 6229c52 0945ad6 432802d 0945ad6 6229c52 432802d 0945ad6 432802d 0945ad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import io
import base64
import numpy as np
import torch
import matplotlib
import matplotlib.cm
import gradio as gr
from PIL import Image
from llama_cpp import Llama
from llama_cpp.llama_chat_format import Llava15ChatHandler
# Converts an image input (PIL Image or file path) into a base64 data URI
def image_to_base64_data_uri(image_input):
if isinstance(image_input, str):
with open(image_input, "rb") as img_file:
base64_data = base64.b64encode(img_file.read()).decode('utf-8')
elif isinstance(image_input, Image.Image):
buffer = io.BytesIO()
image_input.save(buffer, format="PNG")
base64_data = base64.b64encode(buffer.getvalue()).decode('utf-8')
else:
raise ValueError("Unsupported input type. Input must be a file path or a PIL.Image.Image instance.")
return f"data:image/png;base64,{base64_data}"
class Llava:
def __init__(self, mmproj="model/mmproj-model-f16.gguf", model_path="model/ggml-model-q4_0.gguf", gpu=False):
chat_handler = Llava15ChatHandler(clip_model_path=mmproj, verbose=True)
n_gpu_layers = 0
if gpu:
n_gpu_layers = -1
self.llm = Llama(model_path=model_path, chat_handler=chat_handler, n_ctx=2048, logits_all=True, n_gpu_layers=n_gpu_layers)
def run_inference(self, image, prompt):
data_uri = image_to_base64_data_uri(image)
res = self.llm.create_chat_completion(
messages=[
{"role": "system", "content": "You are an assistant who perfectly describes images."},
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": data_uri}},
{"type": "text", "text": prompt}
]
}
]
)
return res["choices"][0]["message"]["content"]
llm_model = Llava()
def predict(image, prompt):
result = llm_model.run_inference(image, prompt)
return result
title_and_links_markdown = """
# 🛸SpaceLLaVA🌋: A spatial reasoning multi-modal model
This space hosts our initial release of LLaVA 1.5 LoRA tuned for spatial reasoning using data generated with [VQASynth](https://github.com/remyxai/VQASynth).
Upload an image and ask a question.
[Model](https://huggingface.co/remyxai/SpaceLLaVA) | [Code](https://github.com/remyxai/VQASynth) | [Paper](https://spatial-vlm.github.io)
"""
examples = [
["examples/warehouse_1.jpg", "Is the man wearing gray pants to the left of the pile of boxes on a pallet?"],
["examples/warehouse_2.jpg", "Is the forklift taller than the shelves of boxes?"],
]
# Create the Gradio interface with the markdown
iface = gr.Interface(
fn=predict,
inputs=[gr.Image(type="pil", label="Input Image"), gr.Textbox(label="Prompt")],
outputs=gr.Textbox(),
examples=examples,
title="🛸SpaceLLaVA🌋: A spatial reasoning multi-modal model",
description=title_and_links_markdown # Use description for markdown
)
# Launch the Gradio app
iface.launch()
|