Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,828 Bytes
3e7a2b7 ebd9056 0d09a3a ebd9056 0d09a3a ebd9056 0d09a3a ebd9056 0d09a3a ebd9056 0d09a3a ebd9056 0d09a3a ebd9056 0d09a3a ebd9056 0d09a3a ebd9056 0d09a3a ebd9056 0d09a3a ebd9056 0d09a3a 3e7a2b7 22fc8c6 0d09a3a ebd9056 0d09a3a ebd9056 0d09a3a ebd9056 0d09a3a 3e7a2b7 22fc8c6 ebd9056 22fc8c6 ebd9056 0d09a3a 3e7a2b7 ebd9056 3e7a2b7 0d09a3a ebd9056 0d09a3a ebd9056 0d09a3a ebd9056 0d09a3a ebd9056 0d09a3a 3e7a2b7 0d09a3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
import uuid
import tempfile
import cv2
import open3d as o3d
import PIL
from PIL import Image
from vqasynth.depth import DepthEstimator
from vqasynth.localize import Localizer
from vqasynth.scene_fusion import SpatialSceneConstructor
from vqasynth.prompts import PromptGenerator
import numpy as np
import gradio as gr
import spaces
depth = DepthEstimator(from_onnx=False)
localizer = Localizer()
spatial_scene_constructor = SpatialSceneConstructor()
prompt_generator = PromptGenerator()
def combine_segmented_pointclouds(
pointcloud_ply_files: list, captions: list, prompts: list, cache_dir: str
):
"""
Process a list of segmented point clouds to combine two based on captions and return the resulting 3D point cloud and the identified prompt.
Args:
pointcloud_ply_files (list): List of file paths to `.pcd` files representing segmented point clouds.
captions (list): List of captions corresponding to the segmented point clouds.
prompts (list): List of prompts containing questions and answers about the captions.
cache_dir (str): Directory to save the final `.ply` and `.obj` files.
Returns:
tuple: The path to the generated `.obj` file and the identified prompt text.
"""
selected_prompt = None
selected_indices = None
for i, caption1 in enumerate(captions):
for j, caption2 in enumerate(captions):
if i != j:
for prompt in prompts:
if caption1 in prompt and caption2 in prompt:
selected_prompt = prompt
selected_indices = (i, j)
break
if selected_prompt:
break
if selected_prompt:
break
if not selected_prompt or not selected_indices:
raise ValueError("No prompt found containing two captions.")
idx1, idx2 = selected_indices
pointcloud_files = [pointcloud_ply_files[idx1], pointcloud_ply_files[idx2]]
captions = [captions[idx1], captions[idx2]]
combined_point_cloud = o3d.geometry.PointCloud()
for idx, pointcloud_file in enumerate(pointcloud_files):
pcd = o3d.io.read_point_cloud(pointcloud_file)
if pcd.is_empty():
continue
combined_point_cloud += pcd
if combined_point_cloud.is_empty():
raise ValueError(
"Combined point cloud is empty after loading the selected segments."
)
uuid_out = str(uuid.uuid4())
ply_file = os.path.join(cache_dir, f"combined_output_{uuid_out}.ply")
obj_file = os.path.join(cache_dir, f"combined_output_{uuid_out}.obj")
o3d.io.write_point_cloud(ply_file, combined_point_cloud)
mesh = o3d.io.read_triangle_mesh(ply_file)
o3d.io.write_triangle_mesh(obj_file, mesh)
return obj_file, selected_prompt
@spaces.GPU
def run_vqasynth_pipeline(image: PIL.Image, cache_dir: str):
depth_map, focal_length = depth.run(image)
masks, bounding_boxes, captions = localizer.run(image)
pointcloud_data, cannonicalized = spatial_scene_constructor.run(
str(0), image, depth_map, focal_length, masks, cache_dir
)
prompts = prompt_generator.run(captions, pointcloud_data, cannonicalized)
obj_file, selected_prompt = combine_segmented_pointclouds(
pointcloud_data, captions, prompts, cache_dir
)
return obj_file, selected_prompt
def process_image(image: str):
# Use a persistent temporary directory to keep the .obj file accessible by Gradio
temp_dir = tempfile.mkdtemp()
image = Image.open(image).convert("RGB")
obj_file, prompt = run_vqasynth_pipeline(image, temp_dir)
return obj_file, prompt
def build_demo():
with gr.Blocks() as demo:
gr.Markdown(
"""
# Synthesizing SpatialVQA Samples with VQASynth
This space helps test the full [VQASynth](https://github.com/remyxai/VQASynth) scene reconstruction pipeline on a single image with visualizations.
### [Github](https://github.com/remyxai/VQASynth) | [Collection](https://huggingface.co/collections/remyxai/spacevlms-66a3dbb924756d98e7aec678)
"""
)
gr.Markdown(
"""
## Instructions
Upload an image, and the tool will generate a corresponding 3D point cloud visualization of the objects found and an example prompt and response describing a spatial relationship between the objects.
"""
)
with gr.Row():
with gr.Column():
image_input = gr.Image(type="filepath", label="Upload an Image")
generate_button = gr.Button("Generate")
with gr.Column():
model_output = gr.Model3D(label="3D Point Cloud") # Only used as output
caption_output = gr.Text(label="Caption")
generate_button.click(
process_image, inputs=image_input, outputs=[model_output, caption_output]
)
gr.Examples(
examples=[["./assets/warehouse_rgb.jpg"], ["./assets/spooky_doggy.png"]],
inputs=image_input,
label="Example Images",
examples_per_page=5,
)
gr.Markdown(
"""
## Citation
```
@article{chen2024spatialvlm,
title = {SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities},
author = {Chen, Boyuan and Xu, Zhuo and Kirmani, Sean and Ichter, Brian and Driess, Danny and Florence, Pete and Sadigh, Dorsa and Guibas, Leonidas and Xia, Fei},
journal = {arXiv preprint arXiv:2401.12168},
year = {2024},
url = {https://arxiv.org/abs/2401.12168},
}
```
"""
)
return demo
if __name__ == "__main__":
demo = build_demo()
demo.launch(share=True)
|