Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,617 Bytes
3e7a2b7 ebd9056 3e7a2b7 ebd9056 3e7a2b7 ebd9056 3e7a2b7 ebd9056 3e7a2b7 ebd9056 3e7a2b7 ebd9056 3e7a2b7 ebd9056 3e7a2b7 22fc8c6 ebd9056 3e7a2b7 ebd9056 3e7a2b7 ebd9056 3e7a2b7 22fc8c6 ebd9056 22fc8c6 ebd9056 3e7a2b7 ebd9056 3e7a2b7 ebd9056 3e7a2b7 ebd9056 3e7a2b7 ebd9056 22fc8c6 3e7a2b7 ebd9056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
import os
import sys
import uuid
import torch
import random
import numpy as np
from PIL import Image
import open3d as o3d
import matplotlib.pyplot as plt
from transformers import AutoProcessor, AutoModelForCausalLM
from transformers import SamModel, SamProcessor
import depth_pro
import spacy
import gradio as gr
nlp = spacy.load("en_core_web_sm")
def find_subject(doc):
for token in doc:
# Check if the token is a subject
if "subj" in token.dep_:
return token.text, token.head
return None, None
def extract_descriptions(doc, head):
descriptions = []
for chunk in doc.noun_chunks:
# Check if the chunk is directly related to the subject's verb or is an attribute
if chunk.root.head == head or chunk.root.dep_ == 'attr':
descriptions.append(chunk.text)
return descriptions
def caption_refiner(caption):
doc = nlp(caption)
subject, action_verb = find_subject(doc)
if action_verb:
descriptions = extract_descriptions(doc, action_verb)
return ', '.join(descriptions)
else:
return caption
def sam2(image, input_boxes, model_id="facebook/sam-vit-base"):
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SamModel.from_pretrained(model_id).to(device)
processor = SamProcessor.from_pretrained(model_id)
inputs = processor(image, input_boxes=[[input_boxes]], return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
masks = processor.image_processor.post_process_masks(
outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu()
)
return masks
def load_florence2(model_id="microsoft/Florence-2-base-ft", device='cuda'):
torch_dtype = torch.float16 if device == 'cuda' else torch.float32
florence_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch_dtype, trust_remote_code=True).to(device)
florence_processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
return florence_model, florence_processor
def florence2(image, prompt="", task="<OD>"):
device = florence_model.device
torch_dtype = florence_model.dtype
inputs = florence_processor(text=task + prompt, images=image, return_tensors="pt").to(device, torch_dtype)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
do_sample=False
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(generated_text, task=task, image_size=(image.width, image.height))
return parsed_answer[task]
# Load and preprocess an image.
def depth_estimation(image_path):
model.eval()
image, _, f_px = depth_pro.load_rgb(image_path)
image = transform(image)
# Run inference.
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"] # Depth in [m].
focallength_px = prediction["focallength_px"] # Focal length in pixels.
depth = depth.cpu().numpy()
return depth, focallength_px
def create_point_cloud_from_rgbd(rgb, depth, intrinsic_parameters):
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
o3d.geometry.Image(rgb),
o3d.geometry.Image(depth),
depth_scale=10.0,
depth_trunc=100.0,
convert_rgb_to_intensity=False
)
intrinsic = o3d.camera.PinholeCameraIntrinsic()
intrinsic.set_intrinsics(intrinsic_parameters['width'], intrinsic_parameters['height'],
intrinsic_parameters['fx'], intrinsic_parameters['fy'],
intrinsic_parameters['cx'], intrinsic_parameters['cy'])
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, intrinsic)
return pcd
def canonicalize_point_cloud(pcd, canonicalize_threshold=0.3):
# Segment the largest plane, assumed to be the floor
plane_model, inliers = pcd.segment_plane(distance_threshold=0.01, ransac_n=3, num_iterations=1000)
canonicalized = False
if len(inliers) / len(pcd.points) > canonicalize_threshold:
canonicalized = True
# Ensure the plane normal points upwards
if np.dot(plane_model[:3], [0, 1, 0]) < 0:
plane_model = -plane_model
# Normalize the plane normal vector
normal = plane_model[:3] / np.linalg.norm(plane_model[:3])
# Compute the new basis vectors
new_y = normal
new_x = np.cross(new_y, [0, 0, -1])
new_x /= np.linalg.norm(new_x)
new_z = np.cross(new_x, new_y)
# Create the transformation matrix
transformation = np.identity(4)
transformation[:3, :3] = np.vstack((new_x, new_y, new_z)).T
transformation[:3, 3] = -np.dot(transformation[:3, :3], pcd.points[inliers[0]])
# Apply the transformation
pcd.transform(transformation)
# Additional 180-degree rotation around the Z-axis
rotation_z_180 = np.array([[np.cos(np.pi), -np.sin(np.pi), 0],
[np.sin(np.pi), np.cos(np.pi), 0],
[0, 0, 1]])
pcd.rotate(rotation_z_180, center=(0, 0, 0))
return pcd, canonicalized, transformation
else:
return pcd, canonicalized, None
def compute_iou(box1, box2):
# Extract the coordinates
x1_min, y1_min, x1_max, y1_max = box1
x2_min, y2_min, x2_max, y2_max = box2
# Compute the intersection rectangle
x_inter_min = max(x1_min, x2_min)
y_inter_min = max(y1_min, y2_min)
x_inter_max = min(x1_max, x2_max)
y_inter_max = min(y1_max, y2_max)
# Intersection width and height
inter_width = max(0, x_inter_max - x_inter_min)
inter_height = max(0, y_inter_max - y_inter_min)
# Intersection area
inter_area = inter_width * inter_height
# Boxes areas
box1_area = (x1_max - x1_min) * (y1_max - y1_min)
box2_area = (x2_max - x2_min) * (y2_max - y2_min)
# Union area
union_area = box1_area + box2_area - inter_area
# Intersection over Union
iou = inter_area / union_area if union_area != 0 else 0
return iou
def human_like_distance(distance_meters, scale_factor=10):
# Define the choices with units included, focusing on the 0.1 to 10 meters range
distance_meters *= scale_factor
if distance_meters < 1: # For distances less than 1 meter
choices = [
(
round(distance_meters * 100, 2),
"centimeters",
0.2,
), # Centimeters for very small distances
(
round(distance_meters, 2),
"inches",
0.8,
), # Inches for the majority of cases under 1 meter
]
elif distance_meters < 3: # For distances less than 3 meters
choices = [
(round(distance_meters, 2), "meters", 0.5),
(
round(distance_meters, 2),
"feet",
0.5,
), # Feet as a common unit within indoor spaces
]
else: # For distances from 3 up to 10 meters
choices = [
(
round(distance_meters, 2),
"meters",
0.7,
), # Meters for clarity and international understanding
(
round(distance_meters, 2),
"feet",
0.3,
), # Feet for additional context
]
# Normalize probabilities and make a selection
total_probability = sum(prob for _, _, prob in choices)
cumulative_distribution = []
cumulative_sum = 0
for value, unit, probability in choices:
cumulative_sum += probability / total_probability # Normalize probabilities
cumulative_distribution.append((cumulative_sum, value, unit))
# Randomly choose based on the cumulative distribution
r = random.random()
for cumulative_prob, value, unit in cumulative_distribution:
if r < cumulative_prob:
return f"{value} {unit}"
# Fallback to the last choice if something goes wrong
return f"{choices[-1][0]} {choices[-1][1]}"
def filter_bboxes(data, iou_threshold=0.5):
filtered_bboxes = []
filtered_labels = []
for i in range(len(data['bboxes'])):
current_box = data['bboxes'][i]
current_label = data['labels'][i]
is_duplicate = False
for j in range(len(filtered_bboxes)):
if current_label == filtered_labels[j]:# and compute_iou(current_box, filtered_bboxes[j]) > iou_threshold:
is_duplicate = True
break
if not is_duplicate:
filtered_bboxes.append(current_box)
filtered_labels.append(current_label)
return {'bboxes': filtered_bboxes, 'labels': filtered_labels, 'caption': data['caption']}
def process_image(image_path: str):
depth, fx = depth_estimation(image_path)
img = Image.open(image_path).convert('RGB')
width, height = img.size
description = florence2(img, task="<MORE_DETAILED_CAPTION>")
print(description)
regions = []
for cap in description.split('.'):
if cap:
roi = florence2(img, prompt=" " + cap, task="<CAPTION_TO_PHRASE_GROUNDING>")
roi["caption"] = caption_refiner(cap.lower())
roi = filter_bboxes(roi)
if len(roi['bboxes']) > 1:
flip = random.choice(['heads', 'tails'])
if flip == 'heads':
idx = random.randint(1, len(roi['bboxes']) - 1)
else:
idx = 0
if idx > 0: # test bbox IOU
roi['caption'] = roi['labels'][idx].lower() + ' with ' + roi['labels'][0].lower()
roi['bboxes'] = [roi['bboxes'][idx]]
roi['labels'] = [roi['labels'][idx]]
if roi['bboxes']:
regions.append(roi)
print(roi)
bboxes = [item['bboxes'][0] for item in regions]
n = len(bboxes)
distance_matrix = np.zeros((n, n))
for i in range(n):
for j in range(n):
if i != j:
distance_matrix[i][j] = 1 - compute_iou(bboxes[i], bboxes[j])
scores = np.sum(distance_matrix, axis=1)
selected_indices = np.argsort(scores)[-3:]
regions = [(regions[i]['bboxes'][0], regions[i]['caption']) for i in selected_indices][:2]
# Create point cloud
camera_intrinsics = intrinsic_parameters = {
'width': width,
'height': height,
'fx': fx,
'fy': fx * height / width,
'cx': width / 2,
'cy': height / 2,
}
pcd = create_point_cloud_from_rgbd(np.array(img).copy(), depth, camera_intrinsics)
normed_pcd, canonicalized, transformation = canonicalize_point_cloud(pcd)
masks = []
for box, cap in regions:
masks.append((cap, sam2(img, box)))
point_clouds = []
for cap, mask in masks:
m = mask[0].numpy()[0].squeeze().transpose((1, 2, 0))
mask = np.any(m, axis=2)
try:
points = np.asarray(normed_pcd.points)
colors = np.asarray(normed_pcd.colors)
masked_points = points[mask.ravel()]
masked_colors = colors[mask.ravel()]
masked_point_cloud = o3d.geometry.PointCloud()
masked_point_cloud.points = o3d.utility.Vector3dVector(masked_points)
masked_point_cloud.colors = o3d.utility.Vector3dVector(masked_colors)
point_clouds.append((cap, masked_point_cloud))
except:
pass
boxes3D = []
centers = []
pcd = o3d.geometry.PointCloud()
for cap, pc in point_clouds[:2]:
cl, ind = pc.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0)
inlier_cloud = pc.select_by_index(ind)
pcd += inlier_cloud
obb = inlier_cloud.get_axis_aligned_bounding_box()
obb.color = (1, 0, 0)
centers.append(obb.get_center())
boxes3D.append(obb)
lines = [[0, 1]]
points = [centers[0], centers[1]]
distance = human_like_distance(np.asarray(point_clouds[0][1].compute_point_cloud_distance(point_clouds[-1][1])).mean())
text_output = "Distance between {} and {} is: {}".format(point_clouds[0][0], point_clouds[-1][0], distance)
print(text_output)
colors = [[1, 0, 0] for i in range(len(lines))] # Red color for lines
line_set = o3d.geometry.LineSet(
points=o3d.utility.Vector3dVector(points),
lines=o3d.utility.Vector2iVector(lines)
)
line_set.colors = o3d.utility.Vector3dVector(colors)
boxes3D.append(line_set)
uuid_out = str(uuid.uuid4())
ply_file = f"output_{uuid_out}.ply"
obj_file = f"output_{uuid_out}.obj"
o3d.io.write_point_cloud(ply_file, pcd)
mesh = o3d.io.read_triangle_mesh(ply_file)
o3d.io.write_triangle_mesh(obj_file, mesh)
return obj_file, text_output
def custom_draw_geometry_with_rotation(pcd):
def rotate_view(vis):
ctr = vis.get_view_control()
vis.get_render_option().background_color = [0, 0, 0]
ctr.rotate(1.0, 0.0)
# https://github.com/isl-org/Open3D/issues/1483
#parameters = o3d.io.read_pinhole_camera_parameters("ScreenCamera_2024-10-24-10-03-57.json")
#ctr.convert_from_pinhole_camera_parameters(parameters)
return False
o3d.visualization.draw_geometries_with_animation_callback([pcd] + boxes3D,
rotate_view)
def build_demo():
with gr.Blocks() as demo:
# Title and introductory Markdown
gr.Markdown("""
# Synthesizing SpatialVQA Samples with VQASynth
This space helps test the full [VQASynth](https://github.com/remyxai/VQASynth) scene reconstruction pipeline on a single image with visualizations.
### [Github](https://github.com/remyxai/VQASynth) | [Collection](https://huggingface.co/collections/remyxai/spacevlms-66a3dbb924756d98e7aec678)
""")
# Description for users
gr.Markdown("""
## Instructions
Upload an image, and the tool will generate a corresponding 3D point cloud visualization of the objects found and an example prompt and response describing a spatial relationship between the objects.
""")
with gr.Row():
# Left Column: Inputs
with gr.Column():
# Image upload and processing button in the left column
image_input = gr.Image(type="filepath", label="Upload an Image")
generate_button = gr.Button("Generate")
# Right Column: Outputs
with gr.Column():
# 3D Model and Caption Outputs
model_output = gr.Model3D(label="3D Point Cloud") # Only used as output
caption_output = gr.Text(label="Caption")
# Link the button to process the image and display the outputs
generate_button.click(
process_image, # Your processing function
inputs=image_input,
outputs=[model_output, caption_output]
)
# Examples section at the bottom
gr.Examples(
examples=[
["./examples/warehouse_rgb.jpg"], ["./examples/spooky_doggy.png"], ["./examples/bee_and_flower.jpg"], ["./examples/road-through-dense-forest.jpg"], ["./examples/gears.png"] # Update with the path to your example image
],
inputs=image_input,
label="Example Images",
examples_per_page=5
)
# Citations
gr.Markdown("""
## Citation
```
@article{chen2024spatialvlm,
title = {SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities},
author = {Chen, Boyuan and Xu, Zhuo and Kirmani, Sean and Ichter, Brian and Driess, Danny and Florence, Pete and Sadigh, Dorsa and Guibas, Leonidas and Xia, Fei},
journal = {arXiv preprint arXiv:2401.12168},
year = {2024},
url = {https://arxiv.org/abs/2401.12168},
}
```
""")
return demo
if __name__ == "__main__":
global model, transform, florence_model, florence_processor
model, transform = depth_pro.create_model_and_transforms(device='cuda')
florence_model, florence_processor = load_florence2(device='cuda')
demo = build_demo()
demo.launch(share=True)
|