File size: 16,617 Bytes
3e7a2b7
ebd9056
 
 
 
 
3e7a2b7
ebd9056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e7a2b7
ebd9056
 
3e7a2b7
ebd9056
 
 
3e7a2b7
ebd9056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e7a2b7
ebd9056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e7a2b7
ebd9056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e7a2b7
 
 
22fc8c6
ebd9056
 
 
 
3e7a2b7
ebd9056
3e7a2b7
ebd9056
 
 
 
 
3e7a2b7
 
22fc8c6
ebd9056
 
 
 
 
 
 
 
 
 
 
22fc8c6
ebd9056
 
 
 
 
3e7a2b7
ebd9056
 
3e7a2b7
 
ebd9056
3e7a2b7
ebd9056
 
 
 
 
 
3e7a2b7
ebd9056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22fc8c6
3e7a2b7
ebd9056
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import os
import sys
import uuid
import torch
import random
import numpy as np
from PIL import Image
import open3d as o3d
import matplotlib.pyplot as plt

from transformers import AutoProcessor, AutoModelForCausalLM
from transformers import SamModel, SamProcessor

import depth_pro

import spacy
import gradio as gr

nlp = spacy.load("en_core_web_sm")

def find_subject(doc):
    for token in doc:
        # Check if the token is a subject
        if "subj" in token.dep_:
            return token.text, token.head
    return None, None

def extract_descriptions(doc, head):
    descriptions = []
    for chunk in doc.noun_chunks:
        # Check if the chunk is directly related to the subject's verb or is an attribute
        if chunk.root.head == head or chunk.root.dep_ == 'attr':
            descriptions.append(chunk.text)
    return descriptions

def caption_refiner(caption):
    doc = nlp(caption)
    subject, action_verb = find_subject(doc)
    if action_verb:
        descriptions = extract_descriptions(doc, action_verb)
        return ', '.join(descriptions)
    else:
        return caption

def sam2(image, input_boxes, model_id="facebook/sam-vit-base"):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = SamModel.from_pretrained(model_id).to(device)
    processor = SamProcessor.from_pretrained(model_id)
    inputs = processor(image, input_boxes=[[input_boxes]], return_tensors="pt").to(device)
    with torch.no_grad():
        outputs = model(**inputs)

    masks = processor.image_processor.post_process_masks(
        outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu()
    )
    return masks

def load_florence2(model_id="microsoft/Florence-2-base-ft", device='cuda'):
    torch_dtype = torch.float16 if device == 'cuda' else torch.float32
    florence_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch_dtype, trust_remote_code=True).to(device)
    florence_processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
    return florence_model, florence_processor

def florence2(image, prompt="", task="<OD>"):
    device = florence_model.device
    torch_dtype = florence_model.dtype
    inputs = florence_processor(text=task + prompt, images=image, return_tensors="pt").to(device, torch_dtype)
    generated_ids = florence_model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        num_beams=3,
        do_sample=False
    )
    generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = florence_processor.post_process_generation(generated_text, task=task, image_size=(image.width, image.height))
    return parsed_answer[task]


# Load and preprocess an image.
def depth_estimation(image_path):
    model.eval()
    image, _, f_px = depth_pro.load_rgb(image_path)
    image = transform(image)

    # Run inference.
    prediction = model.infer(image, f_px=f_px)
    depth = prediction["depth"]  # Depth in [m].
    focallength_px = prediction["focallength_px"]  # Focal length in pixels.
    depth = depth.cpu().numpy()
    return depth, focallength_px


def create_point_cloud_from_rgbd(rgb, depth, intrinsic_parameters):
    rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
        o3d.geometry.Image(rgb),
        o3d.geometry.Image(depth),
        depth_scale=10.0,
        depth_trunc=100.0,
        convert_rgb_to_intensity=False
    )
    intrinsic = o3d.camera.PinholeCameraIntrinsic()
    intrinsic.set_intrinsics(intrinsic_parameters['width'], intrinsic_parameters['height'],
                             intrinsic_parameters['fx'], intrinsic_parameters['fy'],
                             intrinsic_parameters['cx'], intrinsic_parameters['cy'])
    pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, intrinsic)
    return pcd


def canonicalize_point_cloud(pcd, canonicalize_threshold=0.3):
    # Segment the largest plane, assumed to be the floor
    plane_model, inliers = pcd.segment_plane(distance_threshold=0.01, ransac_n=3, num_iterations=1000)

    canonicalized = False
    if len(inliers) / len(pcd.points) > canonicalize_threshold:
        canonicalized = True

        # Ensure the plane normal points upwards
        if np.dot(plane_model[:3], [0, 1, 0]) < 0:
            plane_model = -plane_model

        # Normalize the plane normal vector
        normal = plane_model[:3] / np.linalg.norm(plane_model[:3])

        # Compute the new basis vectors
        new_y = normal
        new_x = np.cross(new_y, [0, 0, -1])
        new_x /= np.linalg.norm(new_x)
        new_z = np.cross(new_x, new_y)

        # Create the transformation matrix
        transformation = np.identity(4)
        transformation[:3, :3] = np.vstack((new_x, new_y, new_z)).T
        transformation[:3, 3] = -np.dot(transformation[:3, :3], pcd.points[inliers[0]])


        # Apply the transformation
        pcd.transform(transformation)

        # Additional 180-degree rotation around the Z-axis
        rotation_z_180 = np.array([[np.cos(np.pi), -np.sin(np.pi), 0],
                                   [np.sin(np.pi), np.cos(np.pi), 0],
                                   [0, 0, 1]])
        pcd.rotate(rotation_z_180, center=(0, 0, 0))

        return pcd, canonicalized, transformation
    else:
        return pcd, canonicalized, None


def compute_iou(box1, box2):
    # Extract the coordinates
    x1_min, y1_min, x1_max, y1_max = box1
    x2_min, y2_min, x2_max, y2_max = box2
    
    # Compute the intersection rectangle
    x_inter_min = max(x1_min, x2_min)
    y_inter_min = max(y1_min, y2_min)
    x_inter_max = min(x1_max, x2_max)
    y_inter_max = min(y1_max, y2_max)
    
    # Intersection width and height
    inter_width = max(0, x_inter_max - x_inter_min)
    inter_height = max(0, y_inter_max - y_inter_min)
    
    # Intersection area
    inter_area = inter_width * inter_height
    
    # Boxes areas
    box1_area = (x1_max - x1_min) * (y1_max - y1_min)
    box2_area = (x2_max - x2_min) * (y2_max - y2_min)
    
    # Union area
    union_area = box1_area + box2_area - inter_area
    
    # Intersection over Union
    iou = inter_area / union_area if union_area != 0 else 0
    
    return iou


def human_like_distance(distance_meters, scale_factor=10):
    # Define the choices with units included, focusing on the 0.1 to 10 meters range
    distance_meters *= scale_factor
    if distance_meters < 1:  # For distances less than 1 meter
        choices = [
            (
                round(distance_meters * 100, 2),
                "centimeters",
                0.2,
            ),  # Centimeters for very small distances
            (
                round(distance_meters, 2),
                "inches",
                0.8,
            ),  # Inches for the majority of cases under 1 meter
        ]
    elif distance_meters < 3:  # For distances less than 3 meters
        choices = [
            (round(distance_meters, 2), "meters", 0.5),
            (
                round(distance_meters, 2),
                "feet",
                0.5,
            ),  # Feet as a common unit within indoor spaces
        ]
    else:  # For distances from 3 up to 10 meters
        choices = [
            (
                round(distance_meters, 2),
                "meters",
                0.7,
            ),  # Meters for clarity and international understanding
            (
                round(distance_meters, 2),
                "feet",
                0.3,
            ),  # Feet for additional context
        ]
    # Normalize probabilities and make a selection
    total_probability = sum(prob for _, _, prob in choices)
    cumulative_distribution = []
    cumulative_sum = 0
    for value, unit, probability in choices:
        cumulative_sum += probability / total_probability  # Normalize probabilities
        cumulative_distribution.append((cumulative_sum, value, unit))

    # Randomly choose based on the cumulative distribution
    r = random.random()
    for cumulative_prob, value, unit in cumulative_distribution:
        if r < cumulative_prob:
            return f"{value} {unit}"

    # Fallback to the last choice if something goes wrong
    return f"{choices[-1][0]} {choices[-1][1]}"


def filter_bboxes(data, iou_threshold=0.5):
    filtered_bboxes = []
    filtered_labels = []

    for i in range(len(data['bboxes'])):
        current_box = data['bboxes'][i]
        current_label = data['labels'][i]
        is_duplicate = False

        for j in range(len(filtered_bboxes)):
            if current_label == filtered_labels[j]:# and compute_iou(current_box, filtered_bboxes[j]) > iou_threshold:
                is_duplicate = True
                break

        if not is_duplicate:
            filtered_bboxes.append(current_box)
            filtered_labels.append(current_label)

    return {'bboxes': filtered_bboxes, 'labels': filtered_labels, 'caption': data['caption']}

def process_image(image_path: str):
    depth, fx = depth_estimation(image_path)

    img = Image.open(image_path).convert('RGB')
    width, height = img.size

    description = florence2(img, task="<MORE_DETAILED_CAPTION>")
    print(description)

    regions = []
    for cap in description.split('.'):
        if cap:
            roi = florence2(img, prompt=" " + cap, task="<CAPTION_TO_PHRASE_GROUNDING>")
            roi["caption"] = caption_refiner(cap.lower())
            roi = filter_bboxes(roi)
            if len(roi['bboxes']) > 1:
                flip = random.choice(['heads', 'tails'])
                if flip == 'heads':
                    idx = random.randint(1, len(roi['bboxes']) - 1)
                else:
                    idx = 0
                if idx > 0: # test bbox IOU
                    roi['caption'] = roi['labels'][idx].lower() + ' with ' + roi['labels'][0].lower()
                roi['bboxes'] = [roi['bboxes'][idx]]
                roi['labels'] = [roi['labels'][idx]]

            if roi['bboxes']:
                regions.append(roi)
                print(roi)

    bboxes = [item['bboxes'][0] for item in regions]
    n = len(bboxes)
    distance_matrix = np.zeros((n, n))
    for i in range(n):
        for j in range(n):
            if i != j:
                distance_matrix[i][j] = 1 - compute_iou(bboxes[i], bboxes[j])

    scores = np.sum(distance_matrix, axis=1)
    selected_indices = np.argsort(scores)[-3:]
    regions = [(regions[i]['bboxes'][0], regions[i]['caption']) for i in selected_indices][:2]

    # Create point cloud
    camera_intrinsics = intrinsic_parameters = {
        'width': width,
        'height': height,
        'fx': fx,
        'fy': fx * height / width,
        'cx': width / 2,
        'cy': height / 2,
    }

    pcd = create_point_cloud_from_rgbd(np.array(img).copy(), depth, camera_intrinsics)
    normed_pcd, canonicalized, transformation = canonicalize_point_cloud(pcd)


    masks = []
    for box, cap in regions:
        masks.append((cap, sam2(img, box)))


    point_clouds = []
    for cap, mask in masks:
        m = mask[0].numpy()[0].squeeze().transpose((1, 2, 0))
        mask = np.any(m, axis=2)

        try:
            points = np.asarray(normed_pcd.points)
            colors = np.asarray(normed_pcd.colors)
            masked_points = points[mask.ravel()]
            masked_colors = colors[mask.ravel()]

            masked_point_cloud = o3d.geometry.PointCloud()
            masked_point_cloud.points = o3d.utility.Vector3dVector(masked_points)
            masked_point_cloud.colors = o3d.utility.Vector3dVector(masked_colors)

            point_clouds.append((cap, masked_point_cloud))
        except:
            pass

    boxes3D = []
    centers = []
    pcd = o3d.geometry.PointCloud()
    for cap, pc in point_clouds[:2]:
        cl, ind = pc.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0)
        inlier_cloud = pc.select_by_index(ind)
        pcd += inlier_cloud
        obb = inlier_cloud.get_axis_aligned_bounding_box()
        obb.color = (1, 0, 0)
        centers.append(obb.get_center())
        boxes3D.append(obb)


    lines = [[0, 1]]
    points = [centers[0], centers[1]]
    distance = human_like_distance(np.asarray(point_clouds[0][1].compute_point_cloud_distance(point_clouds[-1][1])).mean())
    text_output = "Distance between {} and {} is: {}".format(point_clouds[0][0], point_clouds[-1][0], distance)
    print(text_output)
    
    colors = [[1, 0, 0] for i in range(len(lines))]  # Red color for lines
    line_set = o3d.geometry.LineSet(
        points=o3d.utility.Vector3dVector(points),
        lines=o3d.utility.Vector2iVector(lines)
    )
    line_set.colors = o3d.utility.Vector3dVector(colors)

    boxes3D.append(line_set)


    uuid_out = str(uuid.uuid4())
    ply_file = f"output_{uuid_out}.ply"
    obj_file = f"output_{uuid_out}.obj"
    o3d.io.write_point_cloud(ply_file, pcd)

    mesh = o3d.io.read_triangle_mesh(ply_file)
    
    o3d.io.write_triangle_mesh(obj_file, mesh)

    return obj_file, text_output



def custom_draw_geometry_with_rotation(pcd):

    def rotate_view(vis):
        ctr = vis.get_view_control()
        vis.get_render_option().background_color = [0, 0, 0]
        ctr.rotate(1.0, 0.0)
        # https://github.com/isl-org/Open3D/issues/1483
        #parameters = o3d.io.read_pinhole_camera_parameters("ScreenCamera_2024-10-24-10-03-57.json")
        #ctr.convert_from_pinhole_camera_parameters(parameters)
        return False

    o3d.visualization.draw_geometries_with_animation_callback([pcd] + boxes3D,
                                                              rotate_view)


def build_demo():
    with gr.Blocks() as demo:
        # Title and introductory Markdown
        gr.Markdown("""
        # Synthesizing SpatialVQA Samples with VQASynth
        This space helps test the full [VQASynth](https://github.com/remyxai/VQASynth) scene reconstruction pipeline on a single image with visualizations. 

        ### [Github](https://github.com/remyxai/VQASynth) | [Collection](https://huggingface.co/collections/remyxai/spacevlms-66a3dbb924756d98e7aec678) 
        """)

        # Description for users
        gr.Markdown("""
        ## Instructions
        Upload an image, and the tool will generate a corresponding 3D point cloud visualization of the objects found and an example prompt and response describing a spatial relationship between the objects.
        """)

        with gr.Row():
            # Left Column: Inputs
            with gr.Column():
                # Image upload and processing button in the left column
                image_input = gr.Image(type="filepath", label="Upload an Image")
                generate_button = gr.Button("Generate")

            # Right Column: Outputs
            with gr.Column():
                # 3D Model and Caption Outputs
                model_output = gr.Model3D(label="3D Point Cloud")  # Only used as output
                caption_output = gr.Text(label="Caption")

        # Link the button to process the image and display the outputs
        generate_button.click(
            process_image,  # Your processing function
            inputs=image_input,
            outputs=[model_output, caption_output]
        )

        # Examples section at the bottom
        gr.Examples(
            examples=[
                ["./examples/warehouse_rgb.jpg"], ["./examples/spooky_doggy.png"], ["./examples/bee_and_flower.jpg"], ["./examples/road-through-dense-forest.jpg"], ["./examples/gears.png"]  # Update with the path to your example image
            ],
            inputs=image_input,
            label="Example Images",
            examples_per_page=5
        )

        # Citations
        gr.Markdown("""
        ## Citation
        ```
        @article{chen2024spatialvlm,
          title = {SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities},
          author = {Chen, Boyuan and Xu, Zhuo and Kirmani, Sean and Ichter, Brian and Driess, Danny and Florence, Pete and Sadigh, Dorsa and Guibas, Leonidas and Xia, Fei},
          journal = {arXiv preprint arXiv:2401.12168},
          year = {2024},
          url = {https://arxiv.org/abs/2401.12168},
        }
        ```
        """)

    return demo

if __name__ == "__main__":  
    global model, transform, florence_model, florence_processor
    model, transform = depth_pro.create_model_and_transforms(device='cuda')
    florence_model, florence_processor = load_florence2(device='cuda')


    demo = build_demo()
    demo.launch(share=True)