File size: 8,318 Bytes
3e7a2b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import PIL
import torch
from .modeling_llava import LlavaForConditionalGeneration
from .processing_llava import MLlavaProcessor
# from ..conversation import conv_mllava_v1_mmtag as default_conv
from ..conversation import conv_mllava_v1 as default_conv, conv_templates

from typing import List, Tuple, Union, Tuple

def chat_mllava(
    text:str, 
    images: List[Union[PIL.Image.Image, str]], 
    model:LlavaForConditionalGeneration, 
    processor:MLlavaProcessor, 
    max_input_length:int=None, 
    history:List[dict]=None, 
    **kwargs) -> Tuple[str, List[dict]]:
    """
    Chat with the Mllava model
    Args:
        text: str, the text to be sent to the model, where <image> will be the placeholder for the image
        images: List[PIL.Image.Image], the images to be sent to the model, or None  
        model: LlavaForConditionalGeneration, the model to be used
        processor: MLlavaProcessor, the processor to be used
        max_input_length: int, the maximum input length
        history: List[dict], list of messages in the conversation as history. Each message is a dictionary {"role": "ASSISTANT/USER", "text": "the message"}. If None, the conversation will start from scratch
        kwargs: dict, the generation kwargs
    Returns:
        Tuple[str, List[dict]], the generated text and the history of the conversation
        

    """
    if "llama-3" in model.language_model.name_or_path.lower():
        conv = conv_templates['llama_3']
        terminators = [
            processor.tokenizer.eos_token_id,
            processor.tokenizer.convert_tokens_to_ids("<|eot_id|>")
        ]
    else:
        conv = default_conv
        terminators = None
    kwargs["eos_token_id"] = terminators
    conv = conv.copy()
    conv.messages = []
    if history is not None:
        for message in history:
            assert message["role"] in conv.roles
            conv.append_message(message["role"], message["text"])
        if text:
            assert conv.messages[-1][0] == conv.roles[1], "The last message in the history should be the assistant, if the given text is not empty"
            conv.append_message(conv.roles[0], text)
            conv.append_message(conv.roles[1], "")
            history.append({"role": conv.roles[0], "text": text})
            history.append({"role": conv.roles[1], "text": ""})
        else:
            if conv.messages[-1][0] == conv.roles[1]:
                assert conv.messages[-1][1] == "", "No user message should be provided"
            else:
                assert conv.messages[-1][0] == conv.roles[0], "The last message in the history should be the user, if the given text is empty"
                conv.append_message(conv.roles[0], "")
                history.append({"role": conv.roles[0], "text": ""})
    else:
        history = []
        history.append({"role": conv.roles[0], "text": text})
        history.append({"role": conv.roles[1], "text": ""})
        conv.append_message(conv.roles[0], text)
        conv.append_message(conv.roles[1], "")
    assert conv.messages[-1][0] == conv.roles[1] and conv.messages[-1][1] == "", "Format check"
    assert history[-1]["role"] == conv.roles[1] and history[-1]["text"] == "", "Format check"
    
    prompt = conv.get_prompt()
    if images:
        for i in range(len(images)):
            if isinstance(images[i], str):
                images[i] = PIL.Image.open(images[i]).convert("RGB")
    
    inputs = processor(images=images, text=prompt, return_tensors="pt", truncation=True, max_length=max_input_length)
    for k, v in inputs.items():
        if v is not None:
            if isinstance(v, torch.Tensor):
                inputs[k] = v.to(model.device)
            elif isinstance(v, list):
                inputs[k] = [x.to(model.device) for x in v]
            else:
                raise ValueError(f"Invalid input type: {type(v)}")
    

    output_ids = model.generate(**inputs, **kwargs)
    output_ids = output_ids[0]
    
    # remove the input tokens
    generated_ids = output_ids[inputs["input_ids"].shape[-1]:]
    generated_text = processor.decode(generated_ids, skip_special_tokens=True)

    history[-1]["text"] = generated_text
    
    return generated_text, history


def chat_mllava_stream(
    text:str, 
    images: List[Union[PIL.Image.Image, str]], 
    model:LlavaForConditionalGeneration, 
    processor:MLlavaProcessor, 
    max_input_length:int=None, 
    history:List[dict]=None, 
    **kwargs) -> Tuple[str, List[dict]]:
    """
    Chat with the Mllava model
    Args:
        text: str, the text to be sent to the model, where <image> will be the placeholder for the image
        images: List[PIL.Image.Image], the images to be sent to the model, or None  
        model: LlavaForConditionalGeneration, the model to be used
        processor: MLlavaProcessor, the processor to be used
        max_input_length: int, the maximum input length
        history: List[dict], list of messages in the conversation as history. Each message is a dictionary {"role": "ASSISTANT/USER", "text": "the message"}. If None, the conversation will start from scratch
        kwargs: dict, the generation kwargs
    Returns:
        Tuple[str, List[dict]], the generated text and the history of the conversation
        

    """
    if "llama-3" in model.language_model.name_or_path.lower():
        conv = conv_templates['llama_3']
        terminators = [
            processor.tokenizer.eos_token_id,
            processor.tokenizer.convert_tokens_to_ids("<|eot_id|>")
        ]
    else:
        conv = default_conv
        terminators = None
    kwargs["eos_token_id"] = terminators
    conv = conv.copy()
    conv.messages = []
    if history is not None:
        for message in history:
            assert message["role"] in conv.roles
            conv.append_message(message["role"], message["text"])
        if text:
            assert conv.messages[-1][0] == conv.roles[1], "The last message in the history should be the assistant, if the given text is not empty"
            conv.append_message(conv.roles[0], text)
            conv.append_message(conv.roles[1], "")
            history.append({"role": conv.roles[0], "text": text})
            history.append({"role": conv.roles[1], "text": ""})
        else:
            if conv.messages[-1][0] == conv.roles[1]:
                assert conv.messages[-1][1] == "", "No user message should be provided"
            else:
                assert conv.messages[-1][0] == conv.roles[0], "The last message in the history should be the user, if the given text is empty"
                conv.append_message(conv.roles[0], "")
                history.append({"role": conv.roles[0], "text": ""})
    else:
        history = []
        history.append({"role": conv.roles[0], "text": text})
        history.append({"role": conv.roles[1], "text": ""})
        conv.append_message(conv.roles[0], text)
        conv.append_message(conv.roles[1], "")
    assert conv.messages[-1][0] == conv.roles[1] and conv.messages[-1][1] == "", "Format check"
    assert history[-1]["role"] == conv.roles[1] and history[-1]["text"] == "", "Format check"
    
    prompt = conv.get_prompt()
    if images:
        for i in range(len(images)):
            if isinstance(images[i], str):
                images[i] = PIL.Image.open(images[i])
            images[i] = images[i].convert("RGB")
    
    inputs = processor(images=images, text=prompt, return_tensors="pt", truncation=True, max_length=max_input_length)
    print(processor.tokenizer.decode(inputs["input_ids"][0]))
    for k, v in inputs.items():
        if v is not None:
            if isinstance(v, torch.Tensor):
                inputs[k] = v.to(model.device)
            elif isinstance(v, list):
                inputs[k] = [x.to(model.device) for x in v]
            else:
                raise ValueError(f"Invalid input type: {type(v)}")
    
    from transformers import TextIteratorStreamer
    from threading import Thread
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    kwargs["streamer"] = streamer
    inputs.update(kwargs)
    thread = Thread(target=model.generate, kwargs=inputs)
    thread.start()
    for _output in streamer:
        history[-1]["text"] += _output
        yield history[-1]["text"], history