Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
0d09a3a
1
Parent(s):
1762eb4
update w/ vqasynth
Browse files- app.py +106 -422
- requirements.txt +1 -20
app.py
CHANGED
@@ -1,468 +1,150 @@
|
|
1 |
import os
|
2 |
-
import sys
|
3 |
import uuid
|
4 |
-
import
|
5 |
-
import torch
|
6 |
-
import random
|
7 |
-
import numpy as np
|
8 |
-
from PIL import Image
|
9 |
-
import open3d as o3d
|
10 |
-
import matplotlib.pyplot as plt
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
import
|
|
|
|
|
|
|
16 |
|
17 |
-
import
|
18 |
import gradio as gr
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
# Depth model, transform, and other assets
|
47 |
-
model, transform = depth_pro.create_model_and_transforms(device=DEVICE)
|
48 |
-
|
49 |
-
def find_subject(doc):
|
50 |
-
for token in doc:
|
51 |
-
# Check if the token is a subject
|
52 |
-
if "subj" in token.dep_:
|
53 |
-
return token.text, token.head
|
54 |
-
return None, None
|
55 |
-
|
56 |
-
def extract_descriptions(doc, head):
|
57 |
-
descriptions = []
|
58 |
-
for chunk in doc.noun_chunks:
|
59 |
-
# Check if the chunk is directly related to the subject's verb or is an attribute
|
60 |
-
if chunk.root.head == head or chunk.root.dep_ == 'attr':
|
61 |
-
descriptions.append(chunk.text)
|
62 |
-
return descriptions
|
63 |
-
|
64 |
-
@spaces.GPU
|
65 |
-
def caption_refiner(caption):
|
66 |
-
doc = nlp(caption)
|
67 |
-
subject, action_verb = find_subject(doc)
|
68 |
-
if action_verb:
|
69 |
-
descriptions = extract_descriptions(doc, action_verb)
|
70 |
-
return ', '.join(descriptions)
|
71 |
-
else:
|
72 |
-
return caption
|
73 |
-
|
74 |
-
@spaces.GPU
|
75 |
-
def sam2(image, input_boxes, model_id="facebook/sam-vit-base"):
|
76 |
-
inputs = sam_processor(image, input_boxes=[[input_boxes]], return_tensors="pt").to(DEVICE)
|
77 |
-
with torch.no_grad():
|
78 |
-
outputs = sam_model(**inputs)
|
79 |
-
|
80 |
-
masks = sam_processor.image_processor.post_process_masks(
|
81 |
-
outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu()
|
82 |
-
)
|
83 |
-
return masks
|
84 |
-
|
85 |
-
|
86 |
-
@spaces.GPU
|
87 |
-
def florence2(image, prompt="", task="<OD>"):
|
88 |
-
torch_dtype = florence_model.dtype
|
89 |
-
inputs = florence_processor(text=task + prompt, images=image, return_tensors="pt").to(DEVICE, torch_dtype)
|
90 |
-
generated_ids = florence_model.generate(
|
91 |
-
input_ids=inputs["input_ids"],
|
92 |
-
pixel_values=inputs["pixel_values"],
|
93 |
-
max_new_tokens=1024,
|
94 |
-
num_beams=3,
|
95 |
-
do_sample=False
|
96 |
-
)
|
97 |
-
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
98 |
-
parsed_answer = florence_processor.post_process_generation(generated_text, task=task, image_size=(image.width, image.height))
|
99 |
-
return parsed_answer[task]
|
100 |
-
|
101 |
-
|
102 |
-
@spaces.GPU
|
103 |
-
def depth_estimation(image_path):
|
104 |
-
model.eval()
|
105 |
-
image, _, f_px = depth_pro.load_rgb(image_path)
|
106 |
-
image = transform(image)
|
107 |
-
|
108 |
-
# Run inference.
|
109 |
-
prediction = model.infer(image, f_px=f_px)
|
110 |
-
depth = prediction["depth"] # Depth in [m].
|
111 |
-
focallength_px = prediction["focallength_px"] # Focal length in pixels.
|
112 |
-
depth = depth.cpu().numpy()
|
113 |
-
return depth, focallength_px
|
114 |
-
|
115 |
-
|
116 |
-
def create_point_cloud_from_rgbd(rgb, depth, intrinsic_parameters):
|
117 |
-
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
|
118 |
-
o3d.geometry.Image(rgb),
|
119 |
-
o3d.geometry.Image(depth),
|
120 |
-
depth_scale=10.0,
|
121 |
-
depth_trunc=100.0,
|
122 |
-
convert_rgb_to_intensity=False
|
123 |
-
)
|
124 |
-
intrinsic = o3d.camera.PinholeCameraIntrinsic()
|
125 |
-
intrinsic.set_intrinsics(intrinsic_parameters['width'], intrinsic_parameters['height'],
|
126 |
-
intrinsic_parameters['fx'], intrinsic_parameters['fy'],
|
127 |
-
intrinsic_parameters['cx'], intrinsic_parameters['cy'])
|
128 |
-
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, intrinsic)
|
129 |
-
return pcd
|
130 |
-
|
131 |
-
|
132 |
-
def canonicalize_point_cloud(pcd, canonicalize_threshold=0.3):
|
133 |
-
# Segment the largest plane, assumed to be the floor
|
134 |
-
plane_model, inliers = pcd.segment_plane(distance_threshold=0.01, ransac_n=3, num_iterations=1000)
|
135 |
-
|
136 |
-
canonicalized = False
|
137 |
-
if len(inliers) / len(pcd.points) > canonicalize_threshold:
|
138 |
-
canonicalized = True
|
139 |
-
|
140 |
-
# Ensure the plane normal points upwards
|
141 |
-
if np.dot(plane_model[:3], [0, 1, 0]) < 0:
|
142 |
-
plane_model = -plane_model
|
143 |
-
|
144 |
-
# Normalize the plane normal vector
|
145 |
-
normal = plane_model[:3] / np.linalg.norm(plane_model[:3])
|
146 |
-
|
147 |
-
# Compute the new basis vectors
|
148 |
-
new_y = normal
|
149 |
-
new_x = np.cross(new_y, [0, 0, -1])
|
150 |
-
new_x /= np.linalg.norm(new_x)
|
151 |
-
new_z = np.cross(new_x, new_y)
|
152 |
-
|
153 |
-
# Create the transformation matrix
|
154 |
-
transformation = np.identity(4)
|
155 |
-
transformation[:3, :3] = np.vstack((new_x, new_y, new_z)).T
|
156 |
-
transformation[:3, 3] = -np.dot(transformation[:3, :3], pcd.points[inliers[0]])
|
157 |
-
|
158 |
-
|
159 |
-
# Apply the transformation
|
160 |
-
pcd.transform(transformation)
|
161 |
-
|
162 |
-
# Additional 180-degree rotation around the Z-axis
|
163 |
-
rotation_z_180 = np.array([[np.cos(np.pi), -np.sin(np.pi), 0],
|
164 |
-
[np.sin(np.pi), np.cos(np.pi), 0],
|
165 |
-
[0, 0, 1]])
|
166 |
-
pcd.rotate(rotation_z_180, center=(0, 0, 0))
|
167 |
-
|
168 |
-
return pcd, canonicalized, transformation
|
169 |
-
else:
|
170 |
-
return pcd, canonicalized, None
|
171 |
-
|
172 |
-
|
173 |
-
def compute_iou(box1, box2):
|
174 |
-
# Extract the coordinates
|
175 |
-
x1_min, y1_min, x1_max, y1_max = box1
|
176 |
-
x2_min, y2_min, x2_max, y2_max = box2
|
177 |
-
|
178 |
-
# Compute the intersection rectangle
|
179 |
-
x_inter_min = max(x1_min, x2_min)
|
180 |
-
y_inter_min = max(y1_min, y2_min)
|
181 |
-
x_inter_max = min(x1_max, x2_max)
|
182 |
-
y_inter_max = min(y1_max, y2_max)
|
183 |
-
|
184 |
-
# Intersection width and height
|
185 |
-
inter_width = max(0, x_inter_max - x_inter_min)
|
186 |
-
inter_height = max(0, y_inter_max - y_inter_min)
|
187 |
-
|
188 |
-
# Intersection area
|
189 |
-
inter_area = inter_width * inter_height
|
190 |
-
|
191 |
-
# Boxes areas
|
192 |
-
box1_area = (x1_max - x1_min) * (y1_max - y1_min)
|
193 |
-
box2_area = (x2_max - x2_min) * (y2_max - y2_min)
|
194 |
-
|
195 |
-
# Union area
|
196 |
-
union_area = box1_area + box2_area - inter_area
|
197 |
-
|
198 |
-
# Intersection over Union
|
199 |
-
iou = inter_area / union_area if union_area != 0 else 0
|
200 |
-
|
201 |
-
return iou
|
202 |
-
|
203 |
-
|
204 |
-
def human_like_distance(distance_meters, scale_factor=10):
|
205 |
-
# Define the choices with units included, focusing on the 0.1 to 10 meters range
|
206 |
-
distance_meters *= scale_factor
|
207 |
-
if distance_meters < 1: # For distances less than 1 meter
|
208 |
-
choices = [
|
209 |
-
(
|
210 |
-
round(distance_meters * 100, 2),
|
211 |
-
"centimeters",
|
212 |
-
0.2,
|
213 |
-
), # Centimeters for very small distances
|
214 |
-
(
|
215 |
-
round(distance_meters, 2),
|
216 |
-
"inches",
|
217 |
-
0.8,
|
218 |
-
), # Inches for the majority of cases under 1 meter
|
219 |
-
]
|
220 |
-
elif distance_meters < 3: # For distances less than 3 meters
|
221 |
-
choices = [
|
222 |
-
(round(distance_meters, 2), "meters", 0.5),
|
223 |
-
(
|
224 |
-
round(distance_meters, 2),
|
225 |
-
"feet",
|
226 |
-
0.5,
|
227 |
-
), # Feet as a common unit within indoor spaces
|
228 |
-
]
|
229 |
-
else: # For distances from 3 up to 10 meters
|
230 |
-
choices = [
|
231 |
-
(
|
232 |
-
round(distance_meters, 2),
|
233 |
-
"meters",
|
234 |
-
0.7,
|
235 |
-
), # Meters for clarity and international understanding
|
236 |
-
(
|
237 |
-
round(distance_meters, 2),
|
238 |
-
"feet",
|
239 |
-
0.3,
|
240 |
-
), # Feet for additional context
|
241 |
-
]
|
242 |
-
# Normalize probabilities and make a selection
|
243 |
-
total_probability = sum(prob for _, _, prob in choices)
|
244 |
-
cumulative_distribution = []
|
245 |
-
cumulative_sum = 0
|
246 |
-
for value, unit, probability in choices:
|
247 |
-
cumulative_sum += probability / total_probability # Normalize probabilities
|
248 |
-
cumulative_distribution.append((cumulative_sum, value, unit))
|
249 |
-
|
250 |
-
# Randomly choose based on the cumulative distribution
|
251 |
-
r = random.random()
|
252 |
-
for cumulative_prob, value, unit in cumulative_distribution:
|
253 |
-
if r < cumulative_prob:
|
254 |
-
return f"{value} {unit}"
|
255 |
-
|
256 |
-
# Fallback to the last choice if something goes wrong
|
257 |
-
return f"{choices[-1][0]} {choices[-1][1]}"
|
258 |
-
|
259 |
-
|
260 |
-
def filter_bboxes(data, iou_threshold=0.5):
|
261 |
-
filtered_bboxes = []
|
262 |
-
filtered_labels = []
|
263 |
-
|
264 |
-
for i in range(len(data['bboxes'])):
|
265 |
-
current_box = data['bboxes'][i]
|
266 |
-
current_label = data['labels'][i]
|
267 |
-
is_duplicate = False
|
268 |
-
|
269 |
-
for j in range(len(filtered_bboxes)):
|
270 |
-
if current_label == filtered_labels[j]:# and compute_iou(current_box, filtered_bboxes[j]) > iou_threshold:
|
271 |
-
is_duplicate = True
|
272 |
-
break
|
273 |
-
|
274 |
-
if not is_duplicate:
|
275 |
-
filtered_bboxes.append(current_box)
|
276 |
-
filtered_labels.append(current_label)
|
277 |
-
|
278 |
-
return {'bboxes': filtered_bboxes, 'labels': filtered_labels, 'caption': data['caption']}
|
279 |
-
|
280 |
-
@spaces.GPU
|
281 |
-
def process_image(image_path: str):
|
282 |
-
depth, fx = depth_estimation(image_path)
|
283 |
-
|
284 |
-
img = Image.open(image_path).convert('RGB')
|
285 |
-
width, height = img.size
|
286 |
-
|
287 |
-
description = florence2(img, task="<MORE_DETAILED_CAPTION>")
|
288 |
-
print(description)
|
289 |
-
|
290 |
-
regions = []
|
291 |
-
for cap in description.split('.'):
|
292 |
-
if cap:
|
293 |
-
roi = florence2(img, prompt=" " + cap, task="<CAPTION_TO_PHRASE_GROUNDING>")
|
294 |
-
roi["caption"] = caption_refiner(cap.lower())
|
295 |
-
roi = filter_bboxes(roi)
|
296 |
-
if len(roi['bboxes']) > 1:
|
297 |
-
flip = random.choice(['heads', 'tails'])
|
298 |
-
if flip == 'heads':
|
299 |
-
idx = random.randint(1, len(roi['bboxes']) - 1)
|
300 |
-
else:
|
301 |
-
idx = 0
|
302 |
-
if idx > 0: # test bbox IOU
|
303 |
-
roi['caption'] = roi['labels'][idx].lower() + ' with ' + roi['labels'][0].lower()
|
304 |
-
roi['bboxes'] = [roi['bboxes'][idx]]
|
305 |
-
roi['labels'] = [roi['labels'][idx]]
|
306 |
-
|
307 |
-
if roi['bboxes']:
|
308 |
-
regions.append(roi)
|
309 |
-
print(roi)
|
310 |
-
|
311 |
-
bboxes = [item['bboxes'][0] for item in regions]
|
312 |
-
n = len(bboxes)
|
313 |
-
distance_matrix = np.zeros((n, n))
|
314 |
-
for i in range(n):
|
315 |
-
for j in range(n):
|
316 |
if i != j:
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
try:
|
348 |
-
points = np.asarray(normed_pcd.points)
|
349 |
-
colors = np.asarray(normed_pcd.colors)
|
350 |
-
masked_points = points[mask.ravel()]
|
351 |
-
masked_colors = colors[mask.ravel()]
|
352 |
-
|
353 |
-
masked_point_cloud = o3d.geometry.PointCloud()
|
354 |
-
masked_point_cloud.points = o3d.utility.Vector3dVector(masked_points)
|
355 |
-
masked_point_cloud.colors = o3d.utility.Vector3dVector(masked_colors)
|
356 |
-
|
357 |
-
point_clouds.append((cap, masked_point_cloud))
|
358 |
-
except:
|
359 |
-
pass
|
360 |
-
|
361 |
-
boxes3D = []
|
362 |
-
centers = []
|
363 |
-
pcd = o3d.geometry.PointCloud()
|
364 |
-
for cap, pc in point_clouds[:2]:
|
365 |
-
cl, ind = pc.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0)
|
366 |
-
inlier_cloud = pc.select_by_index(ind)
|
367 |
-
pcd += inlier_cloud
|
368 |
-
obb = inlier_cloud.get_axis_aligned_bounding_box()
|
369 |
-
obb.color = (1, 0, 0)
|
370 |
-
centers.append(obb.get_center())
|
371 |
-
boxes3D.append(obb)
|
372 |
-
|
373 |
-
|
374 |
-
lines = [[0, 1]]
|
375 |
-
points = [centers[0], centers[1]]
|
376 |
-
distance = human_like_distance(np.asarray(point_clouds[0][1].compute_point_cloud_distance(point_clouds[-1][1])).mean())
|
377 |
-
text_output = "Distance between {} and {} is: {}".format(point_clouds[0][0], point_clouds[-1][0], distance)
|
378 |
-
print(text_output)
|
379 |
-
|
380 |
-
colors = [[1, 0, 0] for i in range(len(lines))] # Red color for lines
|
381 |
-
line_set = o3d.geometry.LineSet(
|
382 |
-
points=o3d.utility.Vector3dVector(points),
|
383 |
-
lines=o3d.utility.Vector2iVector(lines)
|
384 |
-
)
|
385 |
-
line_set.colors = o3d.utility.Vector3dVector(colors)
|
386 |
-
|
387 |
-
boxes3D.append(line_set)
|
388 |
-
|
389 |
|
390 |
uuid_out = str(uuid.uuid4())
|
391 |
-
ply_file = f"
|
392 |
-
obj_file = f"
|
393 |
-
|
|
|
394 |
|
395 |
mesh = o3d.io.read_triangle_mesh(ply_file)
|
396 |
-
|
397 |
o3d.io.write_triangle_mesh(obj_file, mesh)
|
398 |
|
399 |
-
return obj_file,
|
400 |
-
|
401 |
|
402 |
|
403 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
|
405 |
-
def rotate_view(vis):
|
406 |
-
ctr = vis.get_view_control()
|
407 |
-
vis.get_render_option().background_color = [0, 0, 0]
|
408 |
-
ctr.rotate(1.0, 0.0)
|
409 |
-
# https://github.com/isl-org/Open3D/issues/1483
|
410 |
-
#parameters = o3d.io.read_pinhole_camera_parameters("ScreenCamera_2024-10-24-10-03-57.json")
|
411 |
-
#ctr.convert_from_pinhole_camera_parameters(parameters)
|
412 |
-
return False
|
413 |
|
414 |
-
|
415 |
-
|
|
|
|
|
|
|
|
|
416 |
|
417 |
|
418 |
def build_demo():
|
419 |
with gr.Blocks() as demo:
|
420 |
-
|
421 |
-
|
422 |
# Synthesizing SpatialVQA Samples with VQASynth
|
423 |
This space helps test the full [VQASynth](https://github.com/remyxai/VQASynth) scene reconstruction pipeline on a single image with visualizations.
|
424 |
-
|
425 |
### [Github](https://github.com/remyxai/VQASynth) | [Collection](https://huggingface.co/collections/remyxai/spacevlms-66a3dbb924756d98e7aec678)
|
426 |
-
"""
|
|
|
427 |
|
428 |
-
|
429 |
-
|
430 |
## Instructions
|
431 |
Upload an image, and the tool will generate a corresponding 3D point cloud visualization of the objects found and an example prompt and response describing a spatial relationship between the objects.
|
432 |
-
"""
|
|
|
433 |
|
434 |
with gr.Row():
|
435 |
-
# Left Column: Inputs
|
436 |
with gr.Column():
|
437 |
-
# Image upload and processing button in the left column
|
438 |
image_input = gr.Image(type="filepath", label="Upload an Image")
|
439 |
generate_button = gr.Button("Generate")
|
440 |
|
441 |
-
# Right Column: Outputs
|
442 |
with gr.Column():
|
443 |
-
# 3D Model and Caption Outputs
|
444 |
model_output = gr.Model3D(label="3D Point Cloud") # Only used as output
|
445 |
caption_output = gr.Text(label="Caption")
|
446 |
|
447 |
-
# Link the button to process the image and display the outputs
|
448 |
generate_button.click(
|
449 |
-
process_image,
|
450 |
-
inputs=image_input,
|
451 |
-
outputs=[model_output, caption_output]
|
452 |
)
|
453 |
|
454 |
-
# Examples section at the bottom
|
455 |
gr.Examples(
|
456 |
-
examples=[
|
457 |
-
["./examples/warehouse_rgb.jpg"], ["./examples/spooky_doggy.png"], ["./examples/bee_and_flower.jpg"], ["./examples/road-through-dense-forest.jpg"], ["./examples/gears.png"] # Update with the path to your example image
|
458 |
-
],
|
459 |
inputs=image_input,
|
460 |
label="Example Images",
|
461 |
-
examples_per_page=5
|
462 |
)
|
463 |
|
464 |
-
|
465 |
-
|
466 |
## Citation
|
467 |
```
|
468 |
@article{chen2024spatialvlm,
|
@@ -473,10 +155,12 @@ def build_demo():
|
|
473 |
url = {https://arxiv.org/abs/2401.12168},
|
474 |
}
|
475 |
```
|
476 |
-
"""
|
|
|
477 |
|
478 |
return demo
|
479 |
|
480 |
-
|
|
|
481 |
demo = build_demo()
|
482 |
-
demo.launch()
|
|
|
1 |
import os
|
|
|
2 |
import uuid
|
3 |
+
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
import cv2
|
6 |
+
import open3d as o3d
|
7 |
+
import PIL
|
8 |
+
from PIL import Image
|
9 |
|
10 |
+
from vqasynth.depth import DepthEstimator
|
11 |
+
from vqasynth.localize import Localizer
|
12 |
+
from vqasynth.scene_fusion import SpatialSceneConstructor
|
13 |
+
from vqasynth.prompts import PromptGenerator
|
14 |
|
15 |
+
import numpy as np
|
16 |
import gradio as gr
|
17 |
+
import spaces
|
18 |
|
19 |
+
depth = DepthEstimator(from_onnx=False)
|
20 |
+
localizer = Localizer()
|
21 |
+
spatial_scene_constructor = SpatialSceneConstructor()
|
22 |
+
prompt_generator = PromptGenerator()
|
23 |
+
|
24 |
+
|
25 |
+
def combine_segmented_pointclouds(
|
26 |
+
pointcloud_ply_files: list, captions: list, prompts: list, cache_dir: str
|
27 |
+
):
|
28 |
+
"""
|
29 |
+
Process a list of segmented point clouds to combine two based on captions and return the resulting 3D point cloud and the identified prompt.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
pointcloud_ply_files (list): List of file paths to `.pcd` files representing segmented point clouds.
|
33 |
+
captions (list): List of captions corresponding to the segmented point clouds.
|
34 |
+
prompts (list): List of prompts containing questions and answers about the captions.
|
35 |
+
cache_dir (str): Directory to save the final `.ply` and `.obj` files.
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
tuple: The path to the generated `.obj` file and the identified prompt text.
|
39 |
+
"""
|
40 |
+
selected_prompt = None
|
41 |
+
selected_indices = None
|
42 |
+
for i, caption1 in enumerate(captions):
|
43 |
+
for j, caption2 in enumerate(captions):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
if i != j:
|
45 |
+
for prompt in prompts:
|
46 |
+
if caption1 in prompt and caption2 in prompt:
|
47 |
+
selected_prompt = prompt
|
48 |
+
selected_indices = (i, j)
|
49 |
+
break
|
50 |
+
if selected_prompt:
|
51 |
+
break
|
52 |
+
if selected_prompt:
|
53 |
+
break
|
54 |
+
|
55 |
+
if not selected_prompt or not selected_indices:
|
56 |
+
raise ValueError("No prompt found containing two captions.")
|
57 |
+
|
58 |
+
idx1, idx2 = selected_indices
|
59 |
+
pointcloud_files = [pointcloud_ply_files[idx1], pointcloud_ply_files[idx2]]
|
60 |
+
captions = [captions[idx1], captions[idx2]]
|
61 |
+
|
62 |
+
combined_point_cloud = o3d.geometry.PointCloud()
|
63 |
+
for idx, pointcloud_file in enumerate(pointcloud_files):
|
64 |
+
pcd = o3d.io.read_point_cloud(pointcloud_file)
|
65 |
+
if pcd.is_empty():
|
66 |
+
continue
|
67 |
+
|
68 |
+
combined_point_cloud += pcd
|
69 |
+
|
70 |
+
if combined_point_cloud.is_empty():
|
71 |
+
raise ValueError(
|
72 |
+
"Combined point cloud is empty after loading the selected segments."
|
73 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
uuid_out = str(uuid.uuid4())
|
76 |
+
ply_file = os.path.join(cache_dir, f"combined_output_{uuid_out}.ply")
|
77 |
+
obj_file = os.path.join(cache_dir, f"combined_output_{uuid_out}.obj")
|
78 |
+
|
79 |
+
o3d.io.write_point_cloud(ply_file, combined_point_cloud)
|
80 |
|
81 |
mesh = o3d.io.read_triangle_mesh(ply_file)
|
|
|
82 |
o3d.io.write_triangle_mesh(obj_file, mesh)
|
83 |
|
84 |
+
return obj_file, selected_prompt
|
|
|
85 |
|
86 |
|
87 |
+
@spaces.GPU
|
88 |
+
def run_vqasynth_pipeline(image: PIL.Image, cache_dir: str):
|
89 |
+
depth_map, focal_length = depth.run(image)
|
90 |
+
masks, bounding_boxes, captions = localizer.run(image)
|
91 |
+
pointcloud_data, cannonicalized = spatial_scene_constructor.run(
|
92 |
+
str(0), image, depth_map, focal_length, masks, cache_dir
|
93 |
+
)
|
94 |
+
prompts = prompt_generator.run(captions, pointcloud_data, cannonicalized)
|
95 |
+
obj_file, selected_prompt = combine_segmented_pointclouds(
|
96 |
+
pointcloud_data, captions, prompts, cache_dir
|
97 |
+
)
|
98 |
+
return obj_file, selected_prompt
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
def process_image(image: str):
|
102 |
+
# Use a persistent temporary directory to keep the .obj file accessible by Gradio
|
103 |
+
temp_dir = tempfile.mkdtemp()
|
104 |
+
image = Image.open(image).convert("RGB")
|
105 |
+
obj_file, prompt = run_vqasynth_pipeline(image, temp_dir)
|
106 |
+
return obj_file, prompt
|
107 |
|
108 |
|
109 |
def build_demo():
|
110 |
with gr.Blocks() as demo:
|
111 |
+
gr.Markdown(
|
112 |
+
"""
|
113 |
# Synthesizing SpatialVQA Samples with VQASynth
|
114 |
This space helps test the full [VQASynth](https://github.com/remyxai/VQASynth) scene reconstruction pipeline on a single image with visualizations.
|
|
|
115 |
### [Github](https://github.com/remyxai/VQASynth) | [Collection](https://huggingface.co/collections/remyxai/spacevlms-66a3dbb924756d98e7aec678)
|
116 |
+
"""
|
117 |
+
)
|
118 |
|
119 |
+
gr.Markdown(
|
120 |
+
"""
|
121 |
## Instructions
|
122 |
Upload an image, and the tool will generate a corresponding 3D point cloud visualization of the objects found and an example prompt and response describing a spatial relationship between the objects.
|
123 |
+
"""
|
124 |
+
)
|
125 |
|
126 |
with gr.Row():
|
|
|
127 |
with gr.Column():
|
|
|
128 |
image_input = gr.Image(type="filepath", label="Upload an Image")
|
129 |
generate_button = gr.Button("Generate")
|
130 |
|
|
|
131 |
with gr.Column():
|
|
|
132 |
model_output = gr.Model3D(label="3D Point Cloud") # Only used as output
|
133 |
caption_output = gr.Text(label="Caption")
|
134 |
|
|
|
135 |
generate_button.click(
|
136 |
+
process_image, inputs=image_input, outputs=[model_output, caption_output]
|
|
|
|
|
137 |
)
|
138 |
|
|
|
139 |
gr.Examples(
|
140 |
+
examples=[["./assets/warehouse_rgb.jpg"], ["./assets/spooky_doggy.png"]],
|
|
|
|
|
141 |
inputs=image_input,
|
142 |
label="Example Images",
|
143 |
+
examples_per_page=5,
|
144 |
)
|
145 |
|
146 |
+
gr.Markdown(
|
147 |
+
"""
|
148 |
## Citation
|
149 |
```
|
150 |
@article{chen2024spatialvlm,
|
|
|
155 |
url = {https://arxiv.org/abs/2401.12168},
|
156 |
}
|
157 |
```
|
158 |
+
"""
|
159 |
+
)
|
160 |
|
161 |
return demo
|
162 |
|
163 |
+
|
164 |
+
if __name__ == "__main__":
|
165 |
demo = build_demo()
|
166 |
+
demo.launch(share=True)
|
requirements.txt
CHANGED
@@ -7,29 +7,10 @@ torchaudio==2.4.0
|
|
7 |
transformers>=4.41.0
|
8 |
Pillow
|
9 |
gradio==5.5.0
|
10 |
-
accelerate==0.34.2
|
11 |
-
numpy==1.26.3
|
12 |
-
timm==1.0.9
|
13 |
-
einops==0.7.0
|
14 |
-
open3d==0.18.0
|
15 |
-
opencv-python==4.7.0.72
|
16 |
-
tqdm>=4.66.3
|
17 |
-
torchprofile==0.0.4
|
18 |
-
matplotlib==3.6.2
|
19 |
-
huggingface-hub==0.25.1
|
20 |
-
onnx==1.13.1
|
21 |
-
onnxruntime==1.14.1
|
22 |
-
onnxsim==0.4.35
|
23 |
-
scipy==1.12.0
|
24 |
-
litellm==1.25.2
|
25 |
-
pycocotools==2.0.6
|
26 |
-
datasets==3.1.0
|
27 |
spacy==3.7.5
|
28 |
-
onnxruntime-gpu
|
29 |
-
pandas
|
30 |
-
html5lib
|
31 |
spaces
|
32 |
|
|
|
33 |
git+https://github.com/apple/ml-depth-pro.git
|
34 |
git+https://github.com/facebookresearch/sam2.git
|
35 |
git+https://github.com/openai/CLIP.git
|
|
|
7 |
transformers>=4.41.0
|
8 |
Pillow
|
9 |
gradio==5.5.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
spacy==3.7.5
|
|
|
|
|
|
|
11 |
spaces
|
12 |
|
13 |
+
git+https://github.com/remyxai/VQASynth.git
|
14 |
git+https://github.com/apple/ml-depth-pro.git
|
15 |
git+https://github.com/facebookresearch/sam2.git
|
16 |
git+https://github.com/openai/CLIP.git
|