renaldidafa commited on
Commit
14f5a0f
·
verified ·
1 Parent(s): c8089bc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -12
app.py CHANGED
@@ -4,27 +4,31 @@ import warnings
4
  import gradio as gr
5
  from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
6
  import traceback
 
7
 
8
  warnings.filterwarnings('ignore')
9
 
10
- # Tentukan direktori untuk menyimpan model di direktori lokal repository Hugging Face Spaces
11
- model_dir = "." # Direktori kerja di Hugging Face Spaces
 
 
 
12
 
13
- # Memuat model dari file di dalam direktori yang ditentukan
14
- model_filename = os.path.join(model_dir, 'model_DecisionTreeClassifier.pkl')
15
- vectorizer_filename = os.path.join(model_dir, 'tfidf_vectorizer.pkl')
16
- label_encoder_filename = os.path.join(model_dir, 'label_encoder.pkl')
17
 
18
  # Logging untuk memeriksa apakah file ada
19
  print("Checking if files exist:")
20
- print("Model file exists:", os.path.exists(model_filename))
21
- print("Vectorizer file exists:", os.path.exists(vectorizer_filename))
22
- print("Label encoder file exists:", os.path.exists(label_encoder_filename))
23
 
24
  # Memuat model
25
- loaded_model = joblib.load(model_filename)
26
- vectorizer = joblib.load(vectorizer_filename)
27
- label_encoder = joblib.load(label_encoder_filename)
28
 
29
  # Buat instance dari SentimentIntensityAnalyzer
30
  analyzer = SentimentIntensityAnalyzer()
 
4
  import gradio as gr
5
  from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
6
  import traceback
7
+ from huggingface_hub import hf_hub_download
8
 
9
  warnings.filterwarnings('ignore')
10
 
11
+ # Tentukan repository dan nama file model di Hugging Face Hub
12
+ repo_id = "renaldidafa/sentimentanalysis"
13
+ model_filename = 'model_DecisionTreeClassifier.pkl'
14
+ vectorizer_filename = 'tfidf_vectorizer.pkl'
15
+ label_encoder_filename = 'label_encoder.pkl'
16
 
17
+ # Unduh file model dari Hugging Face Hub
18
+ model_path = hf_hub_download(repo_id=repo_id, filename=model_filename)
19
+ vectorizer_path = hf_hub_download(repo_id=repo_id, filename=vectorizer_filename)
20
+ label_encoder_path = hf_hub_download(repo_id=repo_id, filename=label_encoder_filename)
21
 
22
  # Logging untuk memeriksa apakah file ada
23
  print("Checking if files exist:")
24
+ print("Model file exists:", os.path.exists(model_path))
25
+ print("Vectorizer file exists:", os.path.exists(vectorizer_path))
26
+ print("Label encoder file exists:", os.path.exists(label_encoder_path))
27
 
28
  # Memuat model
29
+ loaded_model = joblib.load(model_path)
30
+ vectorizer = joblib.load(vectorizer_path)
31
+ label_encoder = joblib.load(label_encoder_path)
32
 
33
  # Buat instance dari SentimentIntensityAnalyzer
34
  analyzer = SentimentIntensityAnalyzer()