File size: 5,530 Bytes
e56410f 006270c c1ce44f 24e97b8 8442b36 6123f94 20ab9f7 92ed922 7b94e89 96c8c19 07a6275 603119d 2d26079 603119d 83ea464 2fb0f4c c2c91b6 2fb0f4c 2d26079 a3cc716 2d26079 a3cc716 9e99859 b1647df b6c06f2 83ea464 1b3ea2c 07a6275 7b94e89 6a2fa62 b1647df 6a2fa62 2fb0f4c 4b9ee7c 2d26079 a3cc716 a4f8216 85ce803 efecf8d 07a6275 7b94e89 b1647df a8dc86d 642303e 7b94e89 07a6275 2fb0f4c 642303e b1647df 7b94e89 642303e 483e04d 7b94e89 07a6275 2fb0f4c 642303e 2fb0f4c 642303e a8dc86d 642303e b1647df 642303e efecf8d 85ce803 2fb0f4c 642303e 7b94e89 b1647df 7b94e89 2fb0f4c 812e077 07a6275 642303e ff19de2 642303e 5253d3d b1647df 2fb0f4c 7b94e89 642303e 7b94e89 642303e b6c06f2 642303e 96c8c19 18e65bf 1306203 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import streamlit as st
import base64
import os.path
import os
import cv2
import random
os.system("ls")
col1, col2 = st.columns(2)
title = "Melhoria de imagens"
st.title(title)
os.system("ls")
description = "Sistema para automação。"
st.header(description)
article = "<p style='text-align: center'><a href='https://huggingface.co/spaces/akhaliq/GFPGAN/' target='_blank'>clone from akhaliq@huggingface with little change</a> | <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>GFPGAN Github Repo</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>"
uploaded_file = st.file_uploader("Choose a file")
if uploaded_file is not None:
# To read file as bytes:
bytes_data = uploaded_file.getvalue()
st.video(bytes_data)
os.system("rm -R /tmp/*")
os.system("mkdir /tmp/_input")
os.system("mkdir /tmp/_output")
os.system("mkdir /tmp/_outputf")
os.system("mkdir /tmp/videoSaida")
with open("/tmp/inputvideo", "wb") as binary_file:
binary_file.write(bytes_data)
vcap = cv2.VideoCapture('/tmp/inputvideo') # 0=camera
width=0
height=0
if vcap.isOpened():
# get vcap property
width = vcap.get(3) # float `width`
height = vcap.get(4) # float `height`
st.write(str(width)+"x"+str(height))
fps = vcap.get(5)
st.write(str(fps)+" fps")
@st.experimental_memo(suppress_st_warning=True)
def chamada():
percent_complete=0
my_bar = st.progress(0)
percent_complete= percent_complete+ 10
with col1:
my_bar.progress(percent_complete )
#exec=True
# st.write("ffmpeg separando imagens")
#if not os.path.isfile("./_input/imagem-0001.png"):
vcap = cv2.VideoCapture('/tmp/inputvideo') # 0=camera
width=0
height=0
if vcap.isOpened():
# get vcap property
width = vcap.get(3) # float `width`
height = vcap.get(4) # float `height`
fps = vcap.get(5)
# os.system("ffmpeg -i /tmp/inputvideo -vn -acodec copy /tmp/inputvideo.acc")
os.system("ffmpeg -i /tmp/inputvideo -compression_level 10 -pred mixed -pix_fmt rgb24 -sws_flags +accurate_rnd+full_chroma_int -s "+str(int(width/2))+"x"+str(int(height/2))+" -r 29.97 /tmp/_input/imagem-%4d.png")
percent_complete= percent_complete+ 30
with col1:
my_bar.progress(percent_complete )
# st.write("testando imagem")
input_img = cv2.imread("/tmp/_input/imagem-0002.png" , cv2.IMREAD_COLOR)
input_img= cv2.cvtColor(input_img,cv2.COLOR_BGR2RGB)
with col1:
st.image(input_img)
os.system("ls /tmp/_input")
if 'myVar' not in globals():
myVar=""
# st.write("melhorando faces")
with col2:
with st.spinner('Wait for it...'):
# os.system("pip install git+https://github.com/TencentARC/GFPGAN.git")
os.system("python3 inference_gfpgan.py -i /tmp/_input -o /tmp/_output -v 1.4 -s 2")
with col1:
percent_complete= percent_complete+ 30
my_bar.progress(percent_complete )
os.system("ls /tmp/_output")
os.system("echo ----")
os.system("ls /tmp/_output/cmp")
os.system("echo ----")
os.system("ls /tmp/_output/restored_imgs")
os.system("echo ----")
# s 1480x2560
# with col1:
# st.write("recompilando video")
#ffmpeg -r 60 -f image2 -s 1920x1080 -i _output/restored_imgs/imagem-%4d.png -pix_fmt yuv420p ./videoSaida/output.mp4
os.system("ffmpeg -y -r 29.97 -f image2 -i /tmp/_output/restored_imgs/imagem-%4d.png -pix_fmt yuv420p /tmp/videoSaida/output.mp4")
# os.system("ffmpeg -i /tmp/videoSaida/outputp1.mp4 -i /tmp/inputvideo.acc -c:v copy -c:a aac /tmp/output.mp4")
os.system("ls /tmp/videoSaida")
#st.video("./videoSaida/output.mp4" )
with col1:
# st.write("preparando para download do video")
percent_complete= percent_complete+ 30
my_bar.progress(percent_complete )
with col2:
with open("/tmp/videoSaida/output.mp4", "rb") as file:
st.video(file)
btn = st.download_button(
label="Download video",
data=file,
file_name="output.mp4",
mime="video/mp4"
)
#st.download_button("download video", data, file_name='output.mp4', mime='video/mp4',)
#stremio
#input_img = cv2.imread("./_output/cmp/imagem-0001_0000.png" , cv2.IMREAD_COLOR)
#input_img = cv2.imread("./_output/cmp/imagem-0001_0000.png" , cv2.IMREAD_COLOR)
with col2:
# st.write("demonstrando imagem restaurada")
input_img = cv2.imread("/tmp/_output/restored_imgs/imagem-0002.png" , cv2.IMREAD_COLOR)
input_img= cv2.cvtColor(input_img,cv2.COLOR_BGR2RGB)
st.image(input_img)
exec=False
#return Image.fromarray(restored_faces[0][:,:,::-1])
load = st.checkbox("load")
if load:
chamada()
#st.button('Imagem',on_click=inference)
exec=True
|