File size: 4,759 Bytes
9e629a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import cv2
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt

class ImageProcessor:
    def __init__(self):
        """
        Initialize the image processor for handling image manipulation tasks
        """
        pass
    
    @staticmethod
    def load_image(image_path):
        """
        Load an image from a file path
        
        Args:
            image_path: Path to the image file
            
        Returns:
            Loaded image as numpy array in RGB format
        """
        img = cv2.imread(image_path)
        if img is None:
            raise ValueError(f"Could not load image from {image_path}")
        return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    
    @staticmethod
    def save_image(image, output_path):
        """
        Save an image to a file
        
        Args:
            image: Image as numpy array in RGB format
            output_path: Path to save the image
        """
        # Convert from RGB to BGR for OpenCV
        if len(image.shape) == 3 and image.shape[2] == 3:
            image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        cv2.imwrite(output_path, image)
        
    @staticmethod
    def resize_image(image, width=None, height=None):
        """
        Resize an image while maintaining aspect ratio
        
        Args:
            image: Image as numpy array
            width: Target width (if None, calculated from height)
            height: Target height (if None, calculated from width)
            
        Returns:
            Resized image
        """
        if width is None and height is None:
            return image
            
        h, w = image.shape[:2]
        if width is None:
            aspect = height / float(h)
            dim = (int(w * aspect), height)
        elif height is None:
            aspect = width / float(w)
            dim = (width, int(h * aspect))
        else:
            dim = (width, height)
            
        return cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
    
    @staticmethod
    def normalize_image(image):
        """
        Normalize image values to 0-255 range
        
        Args:
            image: Input image
            
        Returns:
            Normalized image
        """
        return cv2.normalize(image, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
    
    @staticmethod
    def apply_color_map(image, colormap=cv2.COLORMAP_JET):
        """
        Apply a colormap to a grayscale image
        
        Args:
            image: Grayscale image
            colormap: OpenCV colormap type
            
        Returns:
            Color-mapped image
        """
        if len(image.shape) == 3:
            image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
        return cv2.applyColorMap(image, colormap)
    
    @staticmethod
    def overlay_images(background, overlay, alpha=0.5):
        """
        Overlay one image on top of another with transparency
        
        Args:
            background: Background image
            overlay: Image to overlay
            alpha: Transparency factor (0-1)
            
        Returns:
            Combined image
        """
        # Ensure images are the same size
        if background.shape != overlay.shape:
            overlay = cv2.resize(overlay, (background.shape[1], background.shape[0]))
            
        # Blend images
        return cv2.addWeighted(background, 1-alpha, overlay, alpha, 0)
    
    @staticmethod
    def crop_image(image, x, y, width, height):
        """
        Crop a region from an image
        
        Args:
            image: Input image
            x, y: Top-left corner coordinates
            width, height: Dimensions of the crop
            
        Returns:
            Cropped image
        """
        return image[y:y+height, x:x+width]
    
    @staticmethod
    def display_images(images, titles=None, figsize=(15, 10)):
        """
        Display multiple images in a grid
        
        Args:
            images: List of images to display
            titles: List of titles for each image
            figsize: Figure size (width, height)
        """
        n = len(images)
        if titles is None:
            titles = [f'Image {i+1}' for i in range(n)]
            
        fig, axes = plt.subplots(1, n, figsize=figsize)
        if n == 1:
            axes = [axes]
            
        for i, (img, title) in enumerate(zip(images, titles)):
            if len(img.shape) == 2 or img.shape[2] == 1:  # Grayscale
                axes[i].imshow(img, cmap='gray')
            else:  # Color
                axes[i].imshow(img)
            axes[i].set_title(title)
            axes[i].axis('off')
            
        plt.tight_layout()
        return fig