Spaces:
Sleeping
Sleeping
File size: 9,268 Bytes
9e629a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import cv2
import numpy as np
import matplotlib.pyplot as plt
from image_processor import ImageProcessor
from heatmap_generator import HeatmapGenerator
class CombinedVisualizer:
def __init__(self):
"""
Initialize the combined visualizer for creating overlaid threat visualizations
"""
self.image_processor = ImageProcessor()
self.heatmap_generator = HeatmapGenerator()
def create_combined_visualization(self, image_pair_results, output_path, alpha_diff=0.4, alpha_low=0.3, alpha_medium=0.4, dpi=300):
"""
Create a combined visualization that overlays difference image, low and medium threat heatmaps,
and bounding boxes on top of each other.
Args:
image_pair_results: Dictionary containing all processing results
output_path: Path to save the visualization
alpha_diff: Transparency for difference image overlay
alpha_low: Transparency for low threat heatmap overlay
alpha_medium: Transparency for medium threat heatmap overlay
dpi: Resolution for saved image
Returns:
Path to the generated visualization
"""
# Extract required components from results
original_image = image_pair_results['original_image']
difference_image = image_pair_results['difference_image']
bounding_boxes = image_pair_results['bounding_boxes']
multi_heatmaps = image_pair_results.get('multi_heatmaps', {})
labeled_regions = [r for r in image_pair_results.get('labeled_regions', [])
if 'bbox' in r and 'threat_level' in r]
# If labeled_regions not provided, extract from bounding boxes
if not labeled_regions and 'threat_summary' in image_pair_results:
# Create simplified labeled regions from bounding boxes
for bbox in bounding_boxes:
# Default to medium threat if specific threat level not available
labeled_regions.append({
'bbox': bbox,
'threat_level': 'medium',
'difference_percentage': 50 # Default value
})
# Start with a copy of the original image
combined_image = original_image.copy()
# 1. Overlay the difference image with transparency
# Convert difference image to RGB if it's grayscale
if len(difference_image.shape) == 2 or difference_image.shape[2] == 1:
diff_colored = cv2.applyColorMap(difference_image, cv2.COLORMAP_HOT)
diff_colored = cv2.cvtColor(diff_colored, cv2.COLOR_BGR2RGB)
else:
diff_colored = difference_image
# Overlay difference image
combined_image = self.image_processor.overlay_images(combined_image, diff_colored, alpha_diff)
# 2. Overlay low threat heatmap if available
if 'low' in multi_heatmaps:
low_heatmap = multi_heatmaps['low']
combined_image = self.image_processor.overlay_images(combined_image, low_heatmap, alpha_low)
# 3. Overlay medium threat heatmap if available
if 'medium' in multi_heatmaps:
medium_heatmap = multi_heatmaps['medium']
combined_image = self.image_processor.overlay_images(combined_image, medium_heatmap, alpha_medium)
# 4. Draw bounding boxes with threat level colors
threat_colors = {
'low': (0, 255, 0), # Green
'medium': (0, 165, 255), # Orange
'high': (0, 0, 255) # Red
}
# Draw bounding boxes based on threat levels
for region in labeled_regions:
bbox = region['bbox']
threat_level = region['threat_level']
x, y, w, h = bbox
# Get color for this threat level (default to red if not found)
color = threat_colors.get(threat_level, (0, 0, 255))
# Convert BGR to RGB for matplotlib
color_rgb = (color[2]/255, color[1]/255, color[0]/255)
# Draw rectangle with threat level color
cv2.rectangle(combined_image, (x, y), (x + w, y + h), color, 2)
# Add label text with threat level
if 'difference_percentage' in region:
label_text = f"{threat_level.upper()}: {region['difference_percentage']:.1f}%"
else:
label_text = f"{threat_level.upper()}"
cv2.putText(combined_image, label_text, (x, y - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Save the combined visualization
plt.figure(figsize=(12, 8))
plt.imshow(combined_image)
plt.title('Combined Threat Visualization')
plt.axis('off')
plt.tight_layout()
plt.savefig(output_path, dpi=dpi, bbox_inches='tight')
plt.close()
# Also save the raw image for potential further processing
raw_output_path = output_path.replace('.png', '_raw.png')
self.image_processor.save_image(combined_image, raw_output_path)
return output_path
def create_combined_visualization_from_files(self, original_path, difference_path,
low_heatmap_path, medium_heatmap_path,
bounding_boxes, output_path,
alpha_diff=0.4, alpha_low=0.3, alpha_medium=0.4):
"""
Create a combined visualization from individual image files
Args:
original_path: Path to original image
difference_path: Path to difference image
low_heatmap_path: Path to low threat heatmap
medium_heatmap_path: Path to medium threat heatmap
bounding_boxes: List of bounding boxes (x, y, w, h)
output_path: Path to save the visualization
alpha_diff: Transparency for difference image overlay
alpha_low: Transparency for low threat heatmap overlay
alpha_medium: Transparency for medium threat heatmap overlay
Returns:
Path to the generated visualization
"""
# Load images
original_image = self.image_processor.load_image(original_path)
difference_image = self.image_processor.load_image(difference_path)
# Load heatmaps if paths are provided
low_heatmap = None
medium_heatmap = None
if low_heatmap_path:
low_heatmap = self.image_processor.load_image(low_heatmap_path)
if medium_heatmap_path:
medium_heatmap = self.image_processor.load_image(medium_heatmap_path)
# Create a mock image_pair_results dictionary
image_pair_results = {
'original_image': original_image,
'difference_image': difference_image,
'bounding_boxes': bounding_boxes,
'multi_heatmaps': {}
}
if low_heatmap is not None:
image_pair_results['multi_heatmaps']['low'] = low_heatmap
if medium_heatmap is not None:
image_pair_results['multi_heatmaps']['medium'] = medium_heatmap
# Call the main visualization method
return self.create_combined_visualization(
image_pair_results, output_path, alpha_diff, alpha_low, alpha_medium
)
# Example usage
if __name__ == "__main__":
import os
from deepfake_detector import DeepfakeDetector
from labeling import ThreatLabeler
# Initialize components
detector = DeepfakeDetector()
labeler = ThreatLabeler()
heatmap_gen = HeatmapGenerator()
img_processor = ImageProcessor()
visualizer = CombinedVisualizer()
# Example paths
image1_path = "path/to/original.jpg"
image2_path = "path/to/modified.jpg"
output_dir = "path/to/output"
# Ensure output directory exists
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Process images
results = detector.process_image_pair(image1_path, image2_path)
# Label regions
original_image = img_processor.load_image(image1_path)
labeled_image, labeled_regions = labeler.label_regions(
original_image, results['difference_image'], results['bounding_boxes']
)
# Generate multi-level heatmaps
multi_heatmaps = heatmap_gen.generate_multi_level_heatmap(original_image, labeled_regions)
# Prepare results for combined visualization
image_pair_results = {
'original_image': original_image,
'difference_image': results['difference_image'],
'bounding_boxes': results['bounding_boxes'],
'multi_heatmaps': multi_heatmaps,
'labeled_regions': labeled_regions
}
# Create combined visualization
output_path = os.path.join(output_dir, "combined_visualization.png")
visualizer.create_combined_visualization(image_pair_results, output_path)
print(f"Combined visualization saved to: {output_path}") |