File size: 9,268 Bytes
9e629a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import cv2
import numpy as np
import matplotlib.pyplot as plt
from image_processor import ImageProcessor
from heatmap_generator import HeatmapGenerator

class CombinedVisualizer:
    def __init__(self):
        """
        Initialize the combined visualizer for creating overlaid threat visualizations
        """
        self.image_processor = ImageProcessor()
        self.heatmap_generator = HeatmapGenerator()
    
    def create_combined_visualization(self, image_pair_results, output_path, alpha_diff=0.4, alpha_low=0.3, alpha_medium=0.4, dpi=300):
        """
        Create a combined visualization that overlays difference image, low and medium threat heatmaps,
        and bounding boxes on top of each other.
        
        Args:
            image_pair_results: Dictionary containing all processing results
            output_path: Path to save the visualization
            alpha_diff: Transparency for difference image overlay
            alpha_low: Transparency for low threat heatmap overlay
            alpha_medium: Transparency for medium threat heatmap overlay
            dpi: Resolution for saved image
            
        Returns:
            Path to the generated visualization
        """
        # Extract required components from results
        original_image = image_pair_results['original_image']
        difference_image = image_pair_results['difference_image']
        bounding_boxes = image_pair_results['bounding_boxes']
        multi_heatmaps = image_pair_results.get('multi_heatmaps', {})
        labeled_regions = [r for r in image_pair_results.get('labeled_regions', []) 
                          if 'bbox' in r and 'threat_level' in r]
        
        # If labeled_regions not provided, extract from bounding boxes
        if not labeled_regions and 'threat_summary' in image_pair_results:
            # Create simplified labeled regions from bounding boxes
            for bbox in bounding_boxes:
                # Default to medium threat if specific threat level not available
                labeled_regions.append({
                    'bbox': bbox,
                    'threat_level': 'medium',
                    'difference_percentage': 50  # Default value
                })
        
        # Start with a copy of the original image
        combined_image = original_image.copy()
        
        # 1. Overlay the difference image with transparency
        # Convert difference image to RGB if it's grayscale
        if len(difference_image.shape) == 2 or difference_image.shape[2] == 1:
            diff_colored = cv2.applyColorMap(difference_image, cv2.COLORMAP_HOT)
            diff_colored = cv2.cvtColor(diff_colored, cv2.COLOR_BGR2RGB)
        else:
            diff_colored = difference_image
        
        # Overlay difference image
        combined_image = self.image_processor.overlay_images(combined_image, diff_colored, alpha_diff)
        
        # 2. Overlay low threat heatmap if available
        if 'low' in multi_heatmaps:
            low_heatmap = multi_heatmaps['low']
            combined_image = self.image_processor.overlay_images(combined_image, low_heatmap, alpha_low)
        
        # 3. Overlay medium threat heatmap if available
        if 'medium' in multi_heatmaps:
            medium_heatmap = multi_heatmaps['medium']
            combined_image = self.image_processor.overlay_images(combined_image, medium_heatmap, alpha_medium)
        
        # 4. Draw bounding boxes with threat level colors
        threat_colors = {
            'low': (0, 255, 0),      # Green
            'medium': (0, 165, 255), # Orange
            'high': (0, 0, 255)      # Red
        }
        
        # Draw bounding boxes based on threat levels
        for region in labeled_regions:
            bbox = region['bbox']
            threat_level = region['threat_level']
            x, y, w, h = bbox
            
            # Get color for this threat level (default to red if not found)
            color = threat_colors.get(threat_level, (0, 0, 255))
            
            # Convert BGR to RGB for matplotlib
            color_rgb = (color[2]/255, color[1]/255, color[0]/255)
            
            # Draw rectangle with threat level color
            cv2.rectangle(combined_image, (x, y), (x + w, y + h), color, 2)
            
            # Add label text with threat level
            if 'difference_percentage' in region:
                label_text = f"{threat_level.upper()}: {region['difference_percentage']:.1f}%"
            else:
                label_text = f"{threat_level.upper()}"
                
            cv2.putText(combined_image, label_text, (x, y - 10),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
        
        # Save the combined visualization
        plt.figure(figsize=(12, 8))
        plt.imshow(combined_image)
        plt.title('Combined Threat Visualization')
        plt.axis('off')
        plt.tight_layout()
        plt.savefig(output_path, dpi=dpi, bbox_inches='tight')
        plt.close()
        
        # Also save the raw image for potential further processing
        raw_output_path = output_path.replace('.png', '_raw.png')
        self.image_processor.save_image(combined_image, raw_output_path)
        
        return output_path
    
    def create_combined_visualization_from_files(self, original_path, difference_path, 
                                               low_heatmap_path, medium_heatmap_path,
                                               bounding_boxes, output_path, 
                                               alpha_diff=0.4, alpha_low=0.3, alpha_medium=0.4):
        """
        Create a combined visualization from individual image files
        
        Args:
            original_path: Path to original image
            difference_path: Path to difference image
            low_heatmap_path: Path to low threat heatmap
            medium_heatmap_path: Path to medium threat heatmap
            bounding_boxes: List of bounding boxes (x, y, w, h)
            output_path: Path to save the visualization
            alpha_diff: Transparency for difference image overlay
            alpha_low: Transparency for low threat heatmap overlay
            alpha_medium: Transparency for medium threat heatmap overlay
            
        Returns:
            Path to the generated visualization
        """
        # Load images
        original_image = self.image_processor.load_image(original_path)
        difference_image = self.image_processor.load_image(difference_path)
        
        # Load heatmaps if paths are provided
        low_heatmap = None
        medium_heatmap = None
        
        if low_heatmap_path:
            low_heatmap = self.image_processor.load_image(low_heatmap_path)
            
        if medium_heatmap_path:
            medium_heatmap = self.image_processor.load_image(medium_heatmap_path)
        
        # Create a mock image_pair_results dictionary
        image_pair_results = {
            'original_image': original_image,
            'difference_image': difference_image,
            'bounding_boxes': bounding_boxes,
            'multi_heatmaps': {}
        }
        
        if low_heatmap is not None:
            image_pair_results['multi_heatmaps']['low'] = low_heatmap
            
        if medium_heatmap is not None:
            image_pair_results['multi_heatmaps']['medium'] = medium_heatmap
        
        # Call the main visualization method
        return self.create_combined_visualization(
            image_pair_results, output_path, alpha_diff, alpha_low, alpha_medium
        )

# Example usage
if __name__ == "__main__":
    import os
    from deepfake_detector import DeepfakeDetector
    from labeling import ThreatLabeler
    
    # Initialize components
    detector = DeepfakeDetector()
    labeler = ThreatLabeler()
    heatmap_gen = HeatmapGenerator()
    img_processor = ImageProcessor()
    visualizer = CombinedVisualizer()
    
    # Example paths
    image1_path = "path/to/original.jpg"
    image2_path = "path/to/modified.jpg"
    output_dir = "path/to/output"
    
    # Ensure output directory exists
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    
    # Process images
    results = detector.process_image_pair(image1_path, image2_path)
    
    # Label regions
    original_image = img_processor.load_image(image1_path)
    labeled_image, labeled_regions = labeler.label_regions(
        original_image, results['difference_image'], results['bounding_boxes']
    )
    
    # Generate multi-level heatmaps
    multi_heatmaps = heatmap_gen.generate_multi_level_heatmap(original_image, labeled_regions)
    
    # Prepare results for combined visualization
    image_pair_results = {
        'original_image': original_image,
        'difference_image': results['difference_image'],
        'bounding_boxes': results['bounding_boxes'],
        'multi_heatmaps': multi_heatmaps,
        'labeled_regions': labeled_regions
    }
    
    # Create combined visualization
    output_path = os.path.join(output_dir, "combined_visualization.png")
    visualizer.create_combined_visualization(image_pair_results, output_path)
    
    print(f"Combined visualization saved to: {output_path}")