File size: 8,498 Bytes
9e629a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import cv2
import numpy as np
import torch
import torchvision.transforms as transforms
from PIL import Image

class DeepfakeDetector:
    def __init__(self, model_path=None):
        """
        Initialize the deepfake detector with Nvidia AI model
        
        Args:
            model_path: Path to the pre-trained Nvidia AI model
        """
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.model = self._load_model(model_path)
        self.transform = transforms.Compose([
            transforms.Resize((256, 256)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])
    
    def _load_model(self, model_path):
        """
        Load the Nvidia AI model for deepfake detection
        
        Args:
            model_path: Path to the pre-trained model
            
        Returns:
            Loaded model
        """
        # This is a placeholder for the actual model loading code
        # In a real implementation, you would load the specific Nvidia AI model here
        if model_path:
            try:
                # Example placeholder for model loading
                # model = torch.load(model_path, map_location=self.device)
                print(f"Model loaded from {model_path}")
                return None  # Replace with actual model
            except Exception as e:
                print(f"Error loading model: {e}")
                return None
        else:
            print("No model path provided, using default detection methods")
            return None
    
    def calculate_smi(self, image1, image2):
        """
        Calculate Structural Matching Index between two images
        
        Args:
            image1: First image (numpy array or path)
            image2: Second image (numpy array or path)
            
        Returns:
            SMI score (float between 0 and 1)
        """
        # Convert paths to images if needed
        if isinstance(image1, str):
            image1 = cv2.imread(image1)
            image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB)
        
        if isinstance(image2, str):
            image2 = cv2.imread(image2)
            image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
        
        # Ensure images are the same size
        if image1.shape != image2.shape:
            image2 = cv2.resize(image2, (image1.shape[1], image1.shape[0]))
        
        # Calculate SMI (similar to SSIM but adapted for deepfake detection)
        # This is a simplified version - in a real implementation, you would use
        # the specific SMI calculation from the Nvidia AI model
        gray1 = cv2.cvtColor(image1, cv2.COLOR_RGB2GRAY)
        gray2 = cv2.cvtColor(image2, cv2.COLOR_RGB2GRAY)
        
        # Using SSIM as a placeholder for SMI
        from skimage.metrics import structural_similarity as ssim
        smi_score, _ = ssim(gray1, gray2, full=True)
        
        return smi_score
    
    def generate_difference_image(self, image1, image2):
        """
        Generate a difference image highlighting areas of discrepancy
        
        Args:
            image1: First image (numpy array or path)
            image2: Second image (numpy array or path)
            
        Returns:
            Difference image (numpy array)
        """
        # Convert paths to images if needed
        if isinstance(image1, str):
            image1 = cv2.imread(image1)
            image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB)
        
        if isinstance(image2, str):
            image2 = cv2.imread(image2)
            image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
        
        # Ensure images are the same size
        if image1.shape != image2.shape:
            image2 = cv2.resize(image2, (image1.shape[1], image1.shape[0]))
        
        # Convert to grayscale
        gray1 = cv2.cvtColor(image1, cv2.COLOR_RGB2GRAY)
        gray2 = cv2.cvtColor(image2, cv2.COLOR_RGB2GRAY)
        
        # Compute the absolute difference
        diff = cv2.absdiff(gray1, gray2)
        
        # Normalize for better visualization
        diff_normalized = cv2.normalize(diff, None, 0, 255, cv2.NORM_MINMAX)
        
        return diff_normalized
    
    def apply_threshold(self, diff_image, threshold=30):
        """
        Apply threshold to difference image to highlight significant differences
        
        Args:
            diff_image: Difference image (numpy array)
            threshold: Threshold value (0-255)
            
        Returns:
            Thresholded image (numpy array)
        """
        _, thresh = cv2.threshold(diff_image, threshold, 255, cv2.THRESH_BINARY)
        return thresh
    
    def detect_bounding_boxes(self, thresh_image, min_area=100):
        """
        Detect bounding boxes around areas of significant difference
        
        Args:
            thresh_image: Thresholded image (numpy array)
            min_area: Minimum contour area to consider
            
        Returns:
            List of bounding boxes (x, y, w, h)
        """
        # Find contours in the thresholded image
        contours, _ = cv2.findContours(thresh_image.astype(np.uint8), 
                                      cv2.RETR_EXTERNAL, 
                                      cv2.CHAIN_APPROX_SIMPLE)
        
        # Filter contours by area and get bounding boxes
        bounding_boxes = []
        for contour in contours:
            area = cv2.contourArea(contour)
            if area >= min_area:
                x, y, w, h = cv2.boundingRect(contour)
                bounding_boxes.append((x, y, w, h))
        
        return bounding_boxes
    
    def draw_bounding_boxes(self, image, bounding_boxes, color=(0, 255, 0), thickness=2):
        """
        Draw bounding boxes on an image
        
        Args:
            image: Image to draw on (numpy array)
            bounding_boxes: List of bounding boxes (x, y, w, h)
            color: Box color (B, G, R)
            thickness: Line thickness
            
        Returns:
            Image with bounding boxes
        """
        # Make a copy of the image to avoid modifying the original
        result = image.copy()
        
        # Draw each bounding box
        for (x, y, w, h) in bounding_boxes:
            cv2.rectangle(result, (x, y), (x + w, y + h), color, thickness)
        
        return result
    
    def process_image_pair(self, image1, image2, threshold=30, min_area=100):
        """
        Process a pair of images through the complete verification pipeline
        
        Args:
            image1: First image (numpy array or path)
            image2: Second image (numpy array or path)
            threshold: Threshold value for difference detection
            min_area: Minimum area for bounding box detection
            
        Returns:
            Dictionary containing:
            - smi_score: Structural Matching Index
            - difference_image: Difference visualization
            - threshold_image: Thresholded difference image
            - bounding_boxes: List of detected bounding boxes
            - annotated_image: Original image with bounding boxes
        """
        # Load images if paths are provided
        if isinstance(image1, str):
            img1 = cv2.imread(image1)
            img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
        else:
            img1 = image1.copy()
            
        if isinstance(image2, str):
            img2 = cv2.imread(image2)
            img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
        else:
            img2 = image2.copy()
            
        # Calculate SMI
        smi_score = self.calculate_smi(img1, img2)
        
        # Generate difference image
        diff_image = self.generate_difference_image(img1, img2)
        
        # Apply threshold
        thresh_image = self.apply_threshold(diff_image, threshold)
        
        # Detect bounding boxes
        bounding_boxes = self.detect_bounding_boxes(thresh_image, min_area)
        
        # Draw bounding boxes on original image
        annotated_image = self.draw_bounding_boxes(img1, bounding_boxes)
        
        # Return results
        return {
            'smi_score': smi_score,
            'difference_image': diff_image,
            'threshold_image': thresh_image,
            'bounding_boxes': bounding_boxes,
            'annotated_image': annotated_image
        }