Spaces:
Sleeping
Sleeping
File size: 8,498 Bytes
9e629a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import cv2
import numpy as np
import torch
import torchvision.transforms as transforms
from PIL import Image
class DeepfakeDetector:
def __init__(self, model_path=None):
"""
Initialize the deepfake detector with Nvidia AI model
Args:
model_path: Path to the pre-trained Nvidia AI model
"""
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model = self._load_model(model_path)
self.transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def _load_model(self, model_path):
"""
Load the Nvidia AI model for deepfake detection
Args:
model_path: Path to the pre-trained model
Returns:
Loaded model
"""
# This is a placeholder for the actual model loading code
# In a real implementation, you would load the specific Nvidia AI model here
if model_path:
try:
# Example placeholder for model loading
# model = torch.load(model_path, map_location=self.device)
print(f"Model loaded from {model_path}")
return None # Replace with actual model
except Exception as e:
print(f"Error loading model: {e}")
return None
else:
print("No model path provided, using default detection methods")
return None
def calculate_smi(self, image1, image2):
"""
Calculate Structural Matching Index between two images
Args:
image1: First image (numpy array or path)
image2: Second image (numpy array or path)
Returns:
SMI score (float between 0 and 1)
"""
# Convert paths to images if needed
if isinstance(image1, str):
image1 = cv2.imread(image1)
image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB)
if isinstance(image2, str):
image2 = cv2.imread(image2)
image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
# Ensure images are the same size
if image1.shape != image2.shape:
image2 = cv2.resize(image2, (image1.shape[1], image1.shape[0]))
# Calculate SMI (similar to SSIM but adapted for deepfake detection)
# This is a simplified version - in a real implementation, you would use
# the specific SMI calculation from the Nvidia AI model
gray1 = cv2.cvtColor(image1, cv2.COLOR_RGB2GRAY)
gray2 = cv2.cvtColor(image2, cv2.COLOR_RGB2GRAY)
# Using SSIM as a placeholder for SMI
from skimage.metrics import structural_similarity as ssim
smi_score, _ = ssim(gray1, gray2, full=True)
return smi_score
def generate_difference_image(self, image1, image2):
"""
Generate a difference image highlighting areas of discrepancy
Args:
image1: First image (numpy array or path)
image2: Second image (numpy array or path)
Returns:
Difference image (numpy array)
"""
# Convert paths to images if needed
if isinstance(image1, str):
image1 = cv2.imread(image1)
image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB)
if isinstance(image2, str):
image2 = cv2.imread(image2)
image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
# Ensure images are the same size
if image1.shape != image2.shape:
image2 = cv2.resize(image2, (image1.shape[1], image1.shape[0]))
# Convert to grayscale
gray1 = cv2.cvtColor(image1, cv2.COLOR_RGB2GRAY)
gray2 = cv2.cvtColor(image2, cv2.COLOR_RGB2GRAY)
# Compute the absolute difference
diff = cv2.absdiff(gray1, gray2)
# Normalize for better visualization
diff_normalized = cv2.normalize(diff, None, 0, 255, cv2.NORM_MINMAX)
return diff_normalized
def apply_threshold(self, diff_image, threshold=30):
"""
Apply threshold to difference image to highlight significant differences
Args:
diff_image: Difference image (numpy array)
threshold: Threshold value (0-255)
Returns:
Thresholded image (numpy array)
"""
_, thresh = cv2.threshold(diff_image, threshold, 255, cv2.THRESH_BINARY)
return thresh
def detect_bounding_boxes(self, thresh_image, min_area=100):
"""
Detect bounding boxes around areas of significant difference
Args:
thresh_image: Thresholded image (numpy array)
min_area: Minimum contour area to consider
Returns:
List of bounding boxes (x, y, w, h)
"""
# Find contours in the thresholded image
contours, _ = cv2.findContours(thresh_image.astype(np.uint8),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
# Filter contours by area and get bounding boxes
bounding_boxes = []
for contour in contours:
area = cv2.contourArea(contour)
if area >= min_area:
x, y, w, h = cv2.boundingRect(contour)
bounding_boxes.append((x, y, w, h))
return bounding_boxes
def draw_bounding_boxes(self, image, bounding_boxes, color=(0, 255, 0), thickness=2):
"""
Draw bounding boxes on an image
Args:
image: Image to draw on (numpy array)
bounding_boxes: List of bounding boxes (x, y, w, h)
color: Box color (B, G, R)
thickness: Line thickness
Returns:
Image with bounding boxes
"""
# Make a copy of the image to avoid modifying the original
result = image.copy()
# Draw each bounding box
for (x, y, w, h) in bounding_boxes:
cv2.rectangle(result, (x, y), (x + w, y + h), color, thickness)
return result
def process_image_pair(self, image1, image2, threshold=30, min_area=100):
"""
Process a pair of images through the complete verification pipeline
Args:
image1: First image (numpy array or path)
image2: Second image (numpy array or path)
threshold: Threshold value for difference detection
min_area: Minimum area for bounding box detection
Returns:
Dictionary containing:
- smi_score: Structural Matching Index
- difference_image: Difference visualization
- threshold_image: Thresholded difference image
- bounding_boxes: List of detected bounding boxes
- annotated_image: Original image with bounding boxes
"""
# Load images if paths are provided
if isinstance(image1, str):
img1 = cv2.imread(image1)
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)
else:
img1 = image1.copy()
if isinstance(image2, str):
img2 = cv2.imread(image2)
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)
else:
img2 = image2.copy()
# Calculate SMI
smi_score = self.calculate_smi(img1, img2)
# Generate difference image
diff_image = self.generate_difference_image(img1, img2)
# Apply threshold
thresh_image = self.apply_threshold(diff_image, threshold)
# Detect bounding boxes
bounding_boxes = self.detect_bounding_boxes(thresh_image, min_area)
# Draw bounding boxes on original image
annotated_image = self.draw_bounding_boxes(img1, bounding_boxes)
# Return results
return {
'smi_score': smi_score,
'difference_image': diff_image,
'threshold_image': thresh_image,
'bounding_boxes': bounding_boxes,
'annotated_image': annotated_image
} |