File size: 8,025 Bytes
1390aae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import cv2
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from image_processor import ImageProcessor

class HeatmapGenerator:
    def __init__(self):
        """
        Initialize the heatmap generator for visualizing threat areas
        """
        self.image_processor = ImageProcessor()
        
        # Define colormap options
        self.colormap_options = {
            'hot': cv2.COLORMAP_HOT,       # Red-yellow-white, good for high intensity
            'jet': cv2.COLORMAP_JET,       # Blue-cyan-yellow-red, good for range
            'inferno': cv2.COLORMAP_INFERNO,  # Purple-red-yellow, good for threat
            'plasma': cv2.COLORMAP_PLASMA     # Purple-red-yellow, alternative
        }
        
        # Default colormap
        self.default_colormap = 'inferno'
    
    def generate_heatmap_from_diff(self, diff_image, threshold=0, blur_size=15):
        """
        Generate a heatmap directly from a difference image
        
        Args:
            diff_image: Difference image (0-255 range)
            threshold: Minimum difference value to consider (0-255)
            blur_size: Size of Gaussian blur kernel for smoothing
            
        Returns:
            Heatmap image
        """
        # Apply threshold to filter out low differences
        _, thresholded = cv2.threshold(diff_image, threshold, 255, cv2.THRESH_TOZERO)
        
        # Apply Gaussian blur to smooth the heatmap
        if blur_size > 0:
            blurred = cv2.GaussianBlur(thresholded, (blur_size, blur_size), 0)
        else:
            blurred = thresholded
        
        # Apply colormap
        heatmap = cv2.applyColorMap(blurred, self.colormap_options[self.default_colormap])
        
        # Convert to RGB for consistent display
        heatmap_rgb = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
        
        return heatmap_rgb
    
    def generate_heatmap_from_regions(self, image_shape, labeled_regions, sigma=40):
        """
        Generate a heatmap from labeled regions based on threat levels
        
        Args:
            image_shape: Shape of the original image (height, width)
            labeled_regions: List of regions with threat levels from ThreatLabeler
            sigma: Standard deviation for Gaussian kernel
            
        Returns:
            Heatmap image
        """
        # Create an empty heatmap
        height, width = image_shape[:2]
        heatmap = np.zeros((height, width), dtype=np.float32)
        
        # Define threat level weights with increased intensity
        threat_weights = {
            'low': 0.4,
            'medium': 0.7,
            'high': 1.0
        }
        
        # Add each region to the heatmap with appropriate weight
        for region in labeled_regions:
            bbox = region['bbox']
            threat_level = region['threat_level']
            diff_percentage = region['difference_percentage']
            
            # Calculate center of bounding box
            x, y, w, h = bbox
            center_x, center_y = x + w // 2, y + h // 2
            
            # Calculate intensity based on threat level and difference percentage with increased brightness
            intensity = threat_weights[threat_level] * (diff_percentage / 100) * 1.2
            
            # Create a Gaussian kernel centered at the region with increased sigma for more circular spread
            y_coords, x_coords = np.ogrid[:height, :width]
            dist_from_center = ((y_coords - center_y) ** 2 + (x_coords - center_x) ** 2) / (2 * sigma ** 2)
            kernel = np.exp(-dist_from_center) * intensity
            
            # Add to heatmap
            heatmap += kernel
        
        # Normalize heatmap to 0-255 range
        if np.max(heatmap) > 0:  # Avoid division by zero
            heatmap = (heatmap / np.max(heatmap) * 255).astype(np.uint8)
        else:
            heatmap = np.zeros((height, width), dtype=np.uint8)
        
        # Apply colormap
        colored_heatmap = cv2.applyColorMap(heatmap, self.colormap_options[self.default_colormap])
        colored_heatmap = cv2.cvtColor(colored_heatmap, cv2.COLOR_BGR2RGB)
        
        return colored_heatmap
    
    def overlay_heatmap(self, original_image, heatmap, alpha=0.6):
        """
        Overlay heatmap on original image
        
        Args:
            original_image: Original image
            heatmap: Heatmap image
            alpha: Transparency factor (0-1)
            
        Returns:
            Overlaid image
        """
        # Ensure images are the same size
        if original_image.shape[:2] != heatmap.shape[:2]:
            heatmap = cv2.resize(heatmap, (original_image.shape[1], original_image.shape[0]))
        
        # Overlay heatmap on original image
        return self.image_processor.overlay_images(original_image, heatmap, alpha)
    
    def generate_threat_heatmap(self, image, labeled_regions, overlay=True, alpha=0.6):
        """
        Generate a complete threat heatmap visualization
        
        Args:
            image: Original image
            labeled_regions: List of regions with threat levels
            overlay: Whether to overlay on original image
            alpha: Transparency for overlay
            
        Returns:
            Heatmap image or overlaid image
        """
        # Generate heatmap from labeled regions
        heatmap = self.generate_heatmap_from_regions(image.shape, labeled_regions)
        
        # Overlay on original image if requested
        if overlay:
            return self.overlay_heatmap(image, heatmap, alpha)
        else:
            return heatmap
    
    def save_heatmap_visualization(self, image, heatmap, output_path, dpi=300):
        """
        Save a side-by-side visualization of original image and heatmap
        
        Args:
            image: Original image
            heatmap: Heatmap image
            output_path: Path to save visualization
            dpi: Resolution for saved image
        """
        # Create figure with two subplots
        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
        
        # Display original image
        ax1.imshow(image)
        ax1.set_title('Original Image')
        ax1.axis('off')
        
        # Display heatmap
        ax2.imshow(heatmap)
        ax2.set_title('Threat Heatmap')
        ax2.axis('off')
        
        # Save figure
        plt.tight_layout()
        plt.savefig(output_path, dpi=dpi, bbox_inches='tight')
        plt.close()
        
    def generate_multi_level_heatmap(self, image, labeled_regions):
        """
        Generate separate heatmaps for each threat level
        
        Args:
            image: Original image
            labeled_regions: List of regions with threat levels
            
        Returns:
            Dictionary with heatmaps for each threat level and combined
        """
        # Create separate lists for each threat level
        low_regions = [r for r in labeled_regions if r['threat_level'] == 'low']
        medium_regions = [r for r in labeled_regions if r['threat_level'] == 'medium']
        high_regions = [r for r in labeled_regions if r['threat_level'] == 'high']
        
        # Generate heatmaps for each level
        low_heatmap = self.generate_heatmap_from_regions(image.shape, low_regions)
        medium_heatmap = self.generate_heatmap_from_regions(image.shape, medium_regions)
        high_heatmap = self.generate_heatmap_from_regions(image.shape, high_regions)
        
        # Generate combined heatmap
        combined_heatmap = self.generate_heatmap_from_regions(image.shape, labeled_regions)
        
        # Overlay all on original image
        combined_overlay = self.overlay_heatmap(image, combined_heatmap)
        
        return {
            'low': low_heatmap,
            'medium': medium_heatmap,
            'high': high_heatmap,
            'combined': combined_heatmap,
            'overlay': combined_overlay
        }