Spaces:
Sleeping
Sleeping
File size: 8,025 Bytes
1390aae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import cv2
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from image_processor import ImageProcessor
class HeatmapGenerator:
def __init__(self):
"""
Initialize the heatmap generator for visualizing threat areas
"""
self.image_processor = ImageProcessor()
# Define colormap options
self.colormap_options = {
'hot': cv2.COLORMAP_HOT, # Red-yellow-white, good for high intensity
'jet': cv2.COLORMAP_JET, # Blue-cyan-yellow-red, good for range
'inferno': cv2.COLORMAP_INFERNO, # Purple-red-yellow, good for threat
'plasma': cv2.COLORMAP_PLASMA # Purple-red-yellow, alternative
}
# Default colormap
self.default_colormap = 'inferno'
def generate_heatmap_from_diff(self, diff_image, threshold=0, blur_size=15):
"""
Generate a heatmap directly from a difference image
Args:
diff_image: Difference image (0-255 range)
threshold: Minimum difference value to consider (0-255)
blur_size: Size of Gaussian blur kernel for smoothing
Returns:
Heatmap image
"""
# Apply threshold to filter out low differences
_, thresholded = cv2.threshold(diff_image, threshold, 255, cv2.THRESH_TOZERO)
# Apply Gaussian blur to smooth the heatmap
if blur_size > 0:
blurred = cv2.GaussianBlur(thresholded, (blur_size, blur_size), 0)
else:
blurred = thresholded
# Apply colormap
heatmap = cv2.applyColorMap(blurred, self.colormap_options[self.default_colormap])
# Convert to RGB for consistent display
heatmap_rgb = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
return heatmap_rgb
def generate_heatmap_from_regions(self, image_shape, labeled_regions, sigma=40):
"""
Generate a heatmap from labeled regions based on threat levels
Args:
image_shape: Shape of the original image (height, width)
labeled_regions: List of regions with threat levels from ThreatLabeler
sigma: Standard deviation for Gaussian kernel
Returns:
Heatmap image
"""
# Create an empty heatmap
height, width = image_shape[:2]
heatmap = np.zeros((height, width), dtype=np.float32)
# Define threat level weights with increased intensity
threat_weights = {
'low': 0.4,
'medium': 0.7,
'high': 1.0
}
# Add each region to the heatmap with appropriate weight
for region in labeled_regions:
bbox = region['bbox']
threat_level = region['threat_level']
diff_percentage = region['difference_percentage']
# Calculate center of bounding box
x, y, w, h = bbox
center_x, center_y = x + w // 2, y + h // 2
# Calculate intensity based on threat level and difference percentage with increased brightness
intensity = threat_weights[threat_level] * (diff_percentage / 100) * 1.2
# Create a Gaussian kernel centered at the region with increased sigma for more circular spread
y_coords, x_coords = np.ogrid[:height, :width]
dist_from_center = ((y_coords - center_y) ** 2 + (x_coords - center_x) ** 2) / (2 * sigma ** 2)
kernel = np.exp(-dist_from_center) * intensity
# Add to heatmap
heatmap += kernel
# Normalize heatmap to 0-255 range
if np.max(heatmap) > 0: # Avoid division by zero
heatmap = (heatmap / np.max(heatmap) * 255).astype(np.uint8)
else:
heatmap = np.zeros((height, width), dtype=np.uint8)
# Apply colormap
colored_heatmap = cv2.applyColorMap(heatmap, self.colormap_options[self.default_colormap])
colored_heatmap = cv2.cvtColor(colored_heatmap, cv2.COLOR_BGR2RGB)
return colored_heatmap
def overlay_heatmap(self, original_image, heatmap, alpha=0.6):
"""
Overlay heatmap on original image
Args:
original_image: Original image
heatmap: Heatmap image
alpha: Transparency factor (0-1)
Returns:
Overlaid image
"""
# Ensure images are the same size
if original_image.shape[:2] != heatmap.shape[:2]:
heatmap = cv2.resize(heatmap, (original_image.shape[1], original_image.shape[0]))
# Overlay heatmap on original image
return self.image_processor.overlay_images(original_image, heatmap, alpha)
def generate_threat_heatmap(self, image, labeled_regions, overlay=True, alpha=0.6):
"""
Generate a complete threat heatmap visualization
Args:
image: Original image
labeled_regions: List of regions with threat levels
overlay: Whether to overlay on original image
alpha: Transparency for overlay
Returns:
Heatmap image or overlaid image
"""
# Generate heatmap from labeled regions
heatmap = self.generate_heatmap_from_regions(image.shape, labeled_regions)
# Overlay on original image if requested
if overlay:
return self.overlay_heatmap(image, heatmap, alpha)
else:
return heatmap
def save_heatmap_visualization(self, image, heatmap, output_path, dpi=300):
"""
Save a side-by-side visualization of original image and heatmap
Args:
image: Original image
heatmap: Heatmap image
output_path: Path to save visualization
dpi: Resolution for saved image
"""
# Create figure with two subplots
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
# Display original image
ax1.imshow(image)
ax1.set_title('Original Image')
ax1.axis('off')
# Display heatmap
ax2.imshow(heatmap)
ax2.set_title('Threat Heatmap')
ax2.axis('off')
# Save figure
plt.tight_layout()
plt.savefig(output_path, dpi=dpi, bbox_inches='tight')
plt.close()
def generate_multi_level_heatmap(self, image, labeled_regions):
"""
Generate separate heatmaps for each threat level
Args:
image: Original image
labeled_regions: List of regions with threat levels
Returns:
Dictionary with heatmaps for each threat level and combined
"""
# Create separate lists for each threat level
low_regions = [r for r in labeled_regions if r['threat_level'] == 'low']
medium_regions = [r for r in labeled_regions if r['threat_level'] == 'medium']
high_regions = [r for r in labeled_regions if r['threat_level'] == 'high']
# Generate heatmaps for each level
low_heatmap = self.generate_heatmap_from_regions(image.shape, low_regions)
medium_heatmap = self.generate_heatmap_from_regions(image.shape, medium_regions)
high_heatmap = self.generate_heatmap_from_regions(image.shape, high_regions)
# Generate combined heatmap
combined_heatmap = self.generate_heatmap_from_regions(image.shape, labeled_regions)
# Overlay all on original image
combined_overlay = self.overlay_heatmap(image, combined_heatmap)
return {
'low': low_heatmap,
'medium': medium_heatmap,
'high': high_heatmap,
'combined': combined_heatmap,
'overlay': combined_overlay
} |