Spaces:
Sleeping
Sleeping
import cv2 | |
import numpy as np | |
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
class DeepfakeDetector: | |
def __init__(self, model_path=None): | |
""" | |
Initialize the deepfake detector with Nvidia AI model | |
Args: | |
model_path: Path to the pre-trained Nvidia AI model | |
""" | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
self.model = self._load_model(model_path) | |
self.transform = transforms.Compose([ | |
transforms.Resize((256, 256)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
def _load_model(self, model_path): | |
""" | |
Load the Nvidia AI model for deepfake detection | |
Args: | |
model_path: Path to the pre-trained model | |
Returns: | |
Loaded model | |
""" | |
# This is a placeholder for the actual model loading code | |
# In a real implementation, you would load the specific Nvidia AI model here | |
if model_path: | |
try: | |
# Example placeholder for model loading | |
# model = torch.load(model_path, map_location=self.device) | |
print(f"Model loaded from {model_path}") | |
return None # Replace with actual model | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
return None | |
else: | |
print("No model path provided, using default detection methods") | |
return None | |
def calculate_smi(self, image1, image2): | |
""" | |
Calculate Structural Matching Index between two images | |
Args: | |
image1: First image (numpy array or path) | |
image2: Second image (numpy array or path) | |
Returns: | |
SMI score (float between 0 and 1) | |
""" | |
# Convert paths to images if needed | |
if isinstance(image1, str): | |
image1 = cv2.imread(image1) | |
image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB) | |
if isinstance(image2, str): | |
image2 = cv2.imread(image2) | |
image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB) | |
# Ensure images are the same size | |
if image1.shape != image2.shape: | |
image2 = cv2.resize(image2, (image1.shape[1], image1.shape[0])) | |
# Calculate SMI (similar to SSIM but adapted for deepfake detection) | |
# This is a simplified version - in a real implementation, you would use | |
# the specific SMI calculation from the Nvidia AI model | |
gray1 = cv2.cvtColor(image1, cv2.COLOR_RGB2GRAY) | |
gray2 = cv2.cvtColor(image2, cv2.COLOR_RGB2GRAY) | |
# Using SSIM as a placeholder for SMI | |
from skimage.metrics import structural_similarity as ssim | |
smi_score, _ = ssim(gray1, gray2, full=True) | |
return smi_score | |
def generate_difference_image(self, image1, image2): | |
""" | |
Generate a difference image highlighting areas of discrepancy | |
Args: | |
image1: First image (numpy array or path) | |
image2: Second image (numpy array or path) | |
Returns: | |
Difference image (numpy array) | |
""" | |
# Convert paths to images if needed | |
if isinstance(image1, str): | |
image1 = cv2.imread(image1) | |
image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB) | |
if isinstance(image2, str): | |
image2 = cv2.imread(image2) | |
image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB) | |
# Ensure images are the same size | |
if image1.shape != image2.shape: | |
image2 = cv2.resize(image2, (image1.shape[1], image1.shape[0])) | |
# Convert to grayscale | |
gray1 = cv2.cvtColor(image1, cv2.COLOR_RGB2GRAY) | |
gray2 = cv2.cvtColor(image2, cv2.COLOR_RGB2GRAY) | |
# Compute the absolute difference | |
diff = cv2.absdiff(gray1, gray2) | |
# Normalize for better visualization | |
diff_normalized = cv2.normalize(diff, None, 0, 255, cv2.NORM_MINMAX) | |
return diff_normalized | |
def apply_threshold(self, diff_image, threshold=30): | |
""" | |
Apply threshold to difference image to highlight significant differences | |
Args: | |
diff_image: Difference image (numpy array) | |
threshold: Threshold value (0-255) | |
Returns: | |
Thresholded image (numpy array) | |
""" | |
_, thresh = cv2.threshold(diff_image, threshold, 255, cv2.THRESH_BINARY) | |
return thresh | |
def detect_bounding_boxes(self, thresh_image, min_area=100): | |
""" | |
Detect bounding boxes around areas of significant difference | |
Args: | |
thresh_image: Thresholded image (numpy array) | |
min_area: Minimum contour area to consider | |
Returns: | |
List of bounding boxes (x, y, w, h) | |
""" | |
# Find contours in the thresholded image | |
contours, _ = cv2.findContours(thresh_image.astype(np.uint8), | |
cv2.RETR_EXTERNAL, | |
cv2.CHAIN_APPROX_SIMPLE) | |
# Filter contours by area and get bounding boxes | |
bounding_boxes = [] | |
for contour in contours: | |
area = cv2.contourArea(contour) | |
if area >= min_area: | |
x, y, w, h = cv2.boundingRect(contour) | |
bounding_boxes.append((x, y, w, h)) | |
return bounding_boxes | |
def draw_bounding_boxes(self, image, bounding_boxes, color=(0, 255, 0), thickness=2): | |
""" | |
Draw bounding boxes on an image | |
Args: | |
image: Image to draw on (numpy array) | |
bounding_boxes: List of bounding boxes (x, y, w, h) | |
color: Box color (B, G, R) | |
thickness: Line thickness | |
Returns: | |
Image with bounding boxes | |
""" | |
# Make a copy of the image to avoid modifying the original | |
result = image.copy() | |
# Draw each bounding box | |
for (x, y, w, h) in bounding_boxes: | |
cv2.rectangle(result, (x, y), (x + w, y + h), color, thickness) | |
return result | |
def process_image_pair(self, image1, image2, threshold=30, min_area=100): | |
""" | |
Process a pair of images through the complete verification pipeline | |
Args: | |
image1: First image (numpy array or path) | |
image2: Second image (numpy array or path) | |
threshold: Threshold value for difference detection | |
min_area: Minimum area for bounding box detection | |
Returns: | |
Dictionary containing: | |
- smi_score: Structural Matching Index | |
- difference_image: Difference visualization | |
- threshold_image: Thresholded difference image | |
- bounding_boxes: List of detected bounding boxes | |
- annotated_image: Original image with bounding boxes | |
""" | |
# Load images if paths are provided | |
if isinstance(image1, str): | |
img1 = cv2.imread(image1) | |
img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB) | |
else: | |
img1 = image1.copy() | |
if isinstance(image2, str): | |
img2 = cv2.imread(image2) | |
img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB) | |
else: | |
img2 = image2.copy() | |
# Calculate SMI | |
smi_score = self.calculate_smi(img1, img2) | |
# Generate difference image | |
diff_image = self.generate_difference_image(img1, img2) | |
# Apply threshold | |
thresh_image = self.apply_threshold(diff_image, threshold) | |
# Detect bounding boxes | |
bounding_boxes = self.detect_bounding_boxes(thresh_image, min_area) | |
# Draw bounding boxes on original image | |
annotated_image = self.draw_bounding_boxes(img1, bounding_boxes) | |
# Return results | |
return { | |
'smi_score': smi_score, | |
'difference_image': diff_image, | |
'threshold_image': thresh_image, | |
'bounding_boxes': bounding_boxes, | |
'annotated_image': annotated_image | |
} |