File size: 6,116 Bytes
b1f9cea
 
 
 
 
f135978
b1f9cea
7689762
b1f9cea
 
 
 
 
 
 
 
 
 
 
 
f135978
b1f9cea
f135978
 
 
b1f9cea
f135978
b1f9cea
 
 
 
 
 
 
bef076e
b1f9cea
 
7689762
b1f9cea
 
 
7689762
b1f9cea
d823dc8
 
 
 
 
 
 
 
b1f9cea
 
 
 
7689762
b1f9cea
 
 
 
 
 
 
 
 
 
7689762
e2201fe
d823dc8
7689762
d823dc8
18c3a7a
 
d823dc8
 
7689762
 
d823dc8
 
7689762
 
 
 
 
 
e2201fe
 
 
 
18c3a7a
 
e2201fe
 
 
 
 
 
 
7689762
6f8c4ca
7689762
6f8c4ca
b1f9cea
 
 
 
 
 
 
 
 
 
 
7689762
b1f9cea
 
 
 
 
e2201fe
 
7689762
 
 
 
b1f9cea
6f8c4ca
7689762
b1f9cea
 
 
 
7e6817d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

import os
import gradio as gr
import pandas as pd
from pymongo import MongoClient
from datetime import datetime, timedelta
import plotly.express as px
import plotly.graph_objects as go

DB_USER = os.getenv("DB_USER")
DB_PASSWORD = os.getenv("DB_PASSWORD")
DB_HOST = os.getenv("DB_HOST")
client = MongoClient(host=f"mongodb+srv://{DB_USER}:{DB_PASSWORD}@{DB_HOST}/?retryWrites=true&w=majority")

#select database
db = client['algotrading']
#select the collection within the database

def fetch_all_strategy():
    global db
    delta = datetime.now() - timedelta(days=7)
    orders_t = db.orders
    strategies = pd.DataFrame(list(orders_t.find({}, {"strategy_id":1, "created_ts": 1})))
    strategies['created_ts'] = pd.to_datetime(strategies['created_ts'])
    strategies = strategies[~(strategies['created_ts'] <  delta)]
    return list(strategies['strategy_id'].unique())
    


def fetch_orders_for_strategy(strategy):
    global db
    orders_t = db.orders
    #convert entire collection to Pandas dataframe
    orders = pd.DataFrame(list(orders_t.find({"strategy_id": strategy})))
    # orders = orders.dropna(axis=0, subset=['open_price', 'close_price'])
    orders['open_price'] =  orders['open_price'].astype(str).astype(float)
    orders['close_price'] =  orders['close_price'].astype(str).astype(float)
    # orders['created_ts'] = pd.to_datetime(orders['created_ts'])
    orders['created_ts'] = pd.to_datetime(orders['created_ts'])
    orders['closed_ts'] = pd.to_datetime(orders['closed_ts'])
    orders['profit'] = orders['close_price'] - orders['open_price']
    orders['profit'] = orders['profit'].round(2)
    orders['created_date'] = orders['created_ts'].dt.date
    orders['ticker_open_price'] = pd.to_numeric(orders['ticker_open_price'], errors="coerce")
    orders['ticker_close_price'] = pd.to_numeric(orders['ticker_close_price'], errors="coerce")
    orders['ticker_open_price'] = orders['ticker_open_price'].astype(int, errors='ignore')
    orders['ticker_close_price'] = orders['ticker_close_price'].astype(int, errors='ignore')
    orders['ticker_delta'] = orders['ticker_close_price'] - orders['ticker_open_price']
    orders['ticker_delta'] = orders['ticker_delta'].round(2)
    orders['ticker_delta'] = orders.apply(lambda o: o['ticker_delta'] if o['market_position'] == 'long' else -o['ticker_delta'], axis=1)
    #market_position
    orders = orders.sort_values(by='created_ts', ascending=False)
    return orders

def create_latest_profit_plot(strategy, profits):
    if profits not in ["Profits", "Trades"]:
        return gr.update(visible=False)
    orders = fetch_orders_for_strategy(strategy)
    latest_day = orders[orders['strategy_id'] == strategy].sort_values(by='created_ts', ascending=False)['created_date'].unique()[0]
    cumsum = orders[(orders['created_date'] == latest_day) & (orders['strategy_id'] == strategy)] \
        .sort_values(by='created_ts', ascending=True) \
        .groupby(['strategy_id', 'created_ts'])['profit'].sum() \
        .groupby(level=0).cumsum().reset_index()
    plot = px.line(cumsum, x="created_ts", y="profit",
                   title=f"Profits for day for {strategy}")
    plot.update_layout(legend=dict(x=0.5, y=0.99),  title_x=0.5, legend_title_text="")

    trades_table = go.Figure(data=[go.Table(
        header=dict(values=list(['Created', 'Closed',  'Market Type', 'Symbol', 'Qty', 'Ticker Delta', 'Open', 'Close', 'Profit']),
                    align='left'),
        cells=dict(values=[
                            orders.created_ts.dt.strftime("%d-%b %H:%M"),
                            orders.closed_ts.dt.strftime("%d-%b %H:%M"),
                            # orders.ticker_open_price,
                            # orders.ticker_close_price,
                            orders.market_type,
                            orders.tradingsymbol,
                            orders.quantity,
                            orders.ticker_delta,
                            orders.open_price,
                            orders.close_price,
                            orders.profit])
                )
    ])

    profits_table = go.Figure(data=[go.Table(
        header=dict(values=list(['Created', 'Closed',  'Market Type',  'Qty', 'Ticker Delta',  'Profit']),
                    align='left'),
        cells=dict(values=[
                            orders.created_ts.dt.strftime("%d-%b %H:%M"),
                            orders.closed_ts.dt.strftime("%d-%b %H:%M"),
                            orders.market_type,
                            orders.quantity,
                            orders.ticker_delta,
                            orders.profit])
                )
    ])

    if profits == 'Profits':
        return [gr.update(value=plot, visible=True), gr.update(value=profits_table, visible=True), gr.update(value=plot, visible=False)]
    if profits == 'Trades':
        return [gr.update(value=plot, visible=False), gr.update(value=profits_table, visible=False), gr.update(value=trades_table, visible=True)]


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            with gr.Box():
                gr.Markdown("## Select strategies to display")
                strategy = gr.Radio(choices=fetch_all_strategy(), label="")
        with gr.Column():
            with gr.Box():
                gr.Markdown("## Select graphs to display")
                type = gr.Radio(choices=["Profits", "Trades"], label="", value="Profits")
    with gr.Row():
        fetch = gr.Button(value="Fetch")
    with gr.Row():
        with gr.Column():
            profits_plot = gr.Plot(visible=False)
    with gr.Row():
            profits_table = gr.Plot(visible=False)
    with gr.Row():
        with gr.Column():
            trades_plot = gr.Plot(visible=False)


    fetch.click(create_latest_profit_plot, inputs=[strategy, type], outputs=[profits_plot, profits_table, trades_plot])
    # fetch.click(create_latest_profit_plot, inputs=[strategy, type], outputs=trades_plot)
    # fetch.click(create_issue_plot, inputs=[libraries, issues], outputs=issue_plot)


if __name__ == "__main__":
    demo.launch()