import os import gradio as gr import pandas as pd from pymongo import MongoClient from datetime import datetime, timedelta import plotly.express as px import plotly.graph_objects as go DB_USER = os.getenv("DB_USER") DB_PASSWORD = os.getenv("DB_PASSWORD") DB_HOST = os.getenv("DB_HOST") client = MongoClient(host=f"mongodb+srv://{DB_USER}:{DB_PASSWORD}@{DB_HOST}/?retryWrites=true&w=majority") #select database db = client['algotrading'] #select the collection within the database def fetch_all_strategy(): global db delta = datetime.now() - timedelta(days=7) orders_t = db.orders strategies = pd.DataFrame(list(orders_t.find({}, {"strategy_id":1, "created_ts": 1}))) strategies['created_ts'] = pd.to_datetime(strategies['created_ts']) strategies = strategies[~(strategies['created_ts'] < delta)] return list(strategies['strategy_id'].unique()) def fetch_orders_for_strategy(strategy): global db orders_t = db.orders #convert entire collection to Pandas dataframe orders = pd.DataFrame(list(orders_t.find({"strategy_id": strategy}))) # orders = orders.dropna(axis=0, subset=['open_price', 'close_price']) orders['open_price'] = orders['open_price'].astype(str).astype(float) orders['close_price'] = orders['close_price'].astype(str).astype(float) # orders['created_ts'] = pd.to_datetime(orders['created_ts']) orders['created_ts'] = pd.to_datetime(orders['created_ts']) orders['closed_ts'] = pd.to_datetime(orders['closed_ts']) orders['profit'] = orders['close_price'] - orders['open_price'] orders['profit'] = orders['profit'].round(2) orders['created_date'] = orders['created_ts'].dt.date orders['ticker_open_price'] = pd.to_numeric(orders['ticker_open_price'], errors="coerce") orders['ticker_close_price'] = pd.to_numeric(orders['ticker_close_price'], errors="coerce") orders['ticker_open_price'] = orders['ticker_open_price'].astype(int, errors='ignore') orders['ticker_close_price'] = orders['ticker_close_price'].astype(int, errors='ignore') orders['ticker_delta'] = orders['ticker_close_price'] - orders['ticker_open_price'] orders['ticker_delta'] = orders['ticker_delta'].round(2) orders['ticker_delta'] = orders.apply(lambda o: o['ticker_delta'] if o['market_position'] == 'long' else -o['ticker_delta'], axis=1) #market_position orders = orders.sort_values(by='created_ts', ascending=False) return orders def create_latest_profit_plot(strategy, profits): if profits not in ["Profits", "Trades"]: return gr.update(visible=False) orders = fetch_orders_for_strategy(strategy) latest_day = orders[orders['strategy_id'] == strategy].sort_values(by='created_ts', ascending=False)['created_date'].unique()[0] cumsum = orders[(orders['created_date'] == latest_day) & (orders['strategy_id'] == strategy)] \ .sort_values(by='created_ts', ascending=True) \ .groupby(['strategy_id', 'created_ts'])['profit'].sum() \ .groupby(level=0).cumsum().reset_index() plot = px.line(cumsum, x="created_ts", y="profit", title=f"Profits for day for {strategy}") plot.update_layout(legend=dict(x=0.5, y=0.99), title_x=0.5, legend_title_text="") trades_table = go.Figure(data=[go.Table( header=dict(values=list(['Created', 'Closed', 'Market Type', 'Symbol', 'Qty', 'Ticker Delta', 'Open', 'Close', 'Profit']), align='left'), cells=dict(values=[ orders.created_ts.dt.strftime("%d-%b %H:%M"), orders.closed_ts.dt.strftime("%d-%b %H:%M"), # orders.ticker_open_price, # orders.ticker_close_price, orders.market_type, orders.tradingsymbol, orders.quantity, orders.ticker_delta, orders.open_price, orders.close_price, orders.profit]) ) ]) profits_table = go.Figure(data=[go.Table( header=dict(values=list(['Created', 'Closed', 'Market Type', 'Qty', 'Ticker Delta', 'Profit']), align='left'), cells=dict(values=[ orders.created_ts.dt.strftime("%d-%b %H:%M"), orders.closed_ts.dt.strftime("%d-%b %H:%M"), orders.market_type, orders.quantity, orders.ticker_delta, orders.profit]) ) ]) if profits == 'Profits': return [gr.update(value=plot, visible=True), gr.update(value=profits_table, visible=True), gr.update(value=plot, visible=False)] if profits == 'Trades': return [gr.update(value=plot, visible=False), gr.update(value=profits_table, visible=False), gr.update(value=trades_table, visible=True)] with gr.Blocks() as demo: with gr.Row(): with gr.Column(): with gr.Box(): gr.Markdown("## Select strategies to display") strategy = gr.Radio(choices=fetch_all_strategy(), label="") with gr.Column(): with gr.Box(): gr.Markdown("## Select graphs to display") type = gr.Radio(choices=["Profits", "Trades"], label="", value="Profits") with gr.Row(): fetch = gr.Button(value="Fetch") with gr.Row(): with gr.Column(): profits_plot = gr.Plot(visible=False) with gr.Row(): profits_table = gr.Plot(visible=False) with gr.Row(): with gr.Column(): trades_plot = gr.Plot(visible=False) fetch.click(create_latest_profit_plot, inputs=[strategy, type], outputs=[profits_plot, profits_table, trades_plot]) # fetch.click(create_latest_profit_plot, inputs=[strategy, type], outputs=trades_plot) # fetch.click(create_issue_plot, inputs=[libraries, issues], outputs=issue_plot) if __name__ == "__main__": demo.launch()