|
from transformers import pipeline
|
|
from datasets import Dataset
|
|
import streamlit as st
|
|
import torch
|
|
|
|
|
|
st.set_page_config(
|
|
page_title="English to Nyishi Translator",
|
|
page_icon=":repeat:",
|
|
layout="wide",
|
|
)
|
|
|
|
|
|
st.title(":repeat: English to Nyishi Translator")
|
|
st.markdown("Welcome to the English to Nyishi Translator. :sparkles: Simply enter your text in English, and get the translation in Nyishi instantly! :thumbsup:")
|
|
|
|
|
|
if 'text_input' not in st.session_state:
|
|
st.session_state.text_input = ""
|
|
text_input = st.text_area("Enter English text to translate", height=150, value=st.session_state.text_input)
|
|
|
|
|
|
model_directory = "repleeka/eng-nyi-nmt"
|
|
|
|
device = 0 if torch.cuda.is_available() else -1
|
|
translation_pipeline = pipeline(
|
|
task="translation",
|
|
model="repleeka/eng-nyi-nmt",
|
|
tokenizer="repleeka/eng-nyi-nmt",
|
|
device=device
|
|
)
|
|
|
|
|
|
if st.button("Translate", key="translate_button"):
|
|
if text_input:
|
|
with st.spinner("Translating... Please wait"):
|
|
|
|
sentences = [text_input]
|
|
data = Dataset.from_dict({"text": sentences})
|
|
|
|
|
|
try:
|
|
results = data.map(lambda x: {"translation": translation_pipeline(x["text"])})
|
|
result = results[0]["translation"][0]['translation_text']
|
|
|
|
|
|
result = result.capitalize()
|
|
|
|
|
|
st.markdown("#### Translated text:")
|
|
st.markdown(f'<h2 class="result-text">{result}</2>', unsafe_allow_html=True)
|
|
|
|
|
|
except Exception as e:
|
|
st.error(f"Translation error: {e}")
|
|
else:
|
|
st.warning("Please enter text to translate.")
|
|
|
|
|
|
if st.button("Clear Input"):
|
|
st.session_state.text_input = "" |