File size: 17,263 Bytes
d170be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca9b39d
 
d170be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e347567
d170be2
 
 
e347567
d170be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e347567
d170be2
 
 
 
 
 
 
e347567
d170be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e347567
d170be2
 
 
 
 
 
e347567
d170be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e347567
 
d170be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca9b39d
 
 
 
 
d170be2
 
 
 
 
 
 
 
 
 
 
 
 
ca9b39d
 
ad31b8f
ca9b39d
 
ad31b8f
ca9b39d
d170be2
 
 
ca9b39d
ad31b8f
ca9b39d
 
 
90fc92b
 
ca9b39d
ad31b8f
d170be2
 
 
 
 
 
 
 
e347567
d170be2
e347567
 
d170be2
 
 
 
 
 
 
 
 
e347567
d170be2
 
 
 
e347567
d170be2
e347567
 
d170be2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#!/usr/bin/env python3
"""OCR template."""

from __future__ import annotations

import logging
import os
from enum import Enum
from pathlib import Path
from queue import SimpleQueue
from typing import Any, Final, Iterable, Optional, TypeAlias

import cv2 as cv2
import numpy as np
import numpy.typing as npt
import pandas as pd  # type: ignore
import pdf2image  # type: ignore
import rerun as rr  # pip install rerun-sdk
import rerun.blueprint as rrb
from paddleocr import PPStructure  # type: ignore
from paddleocr.ppstructure.recovery.recovery_to_doc import sorted_layout_boxes  # type: ignore

EXAMPLE_DIR: Final = Path(os.path.dirname(__file__))
DATASET_DIR: Final = EXAMPLE_DIR / "dataset"

SAMPLE_IMAGE_URLs = ["https://storage.googleapis.com/rerun-example-datasets/ocr/paper.png"]

PAGE_LIMIT = 10

LayoutStructure: TypeAlias = tuple[
    list[str], list[str], list[rrb.Spatial2DView], list[rrb.Spatial2DView], list[rrb.Spatial2DView]
]

# Supportive Classes


class Color:
    Red = (255, 0, 0)
    Green = (0, 255, 0)
    Blue = (0, 0, 255)
    Yellow = (255, 255, 0)
    Cyan = (0, 255, 255)
    Magenta = (255, 0, 255)
    Purple = (128, 0, 128)
    Orange = (255, 165, 0)


"""
LayoutType:
    Defines an enumeration for different types of document layout elements, each associated with a unique number, name,
    and color. Types:
    - UNKNOWN: Default type for undefined or unrecognized elements, represented by purple.
    - TITLE: Represents the title of a document, represented by red.
    - TEXT: Represents plain text content within the document, represented by green.
    - FIGURE: Represents graphical or image content, represented by blue.
    - FIGURE_CAPTION: Represents captions for figures, represented by yellow.
    - TABLE: Represents tabular data, represented by cyan.
    - TABLE_CAPTION: Represents captions for tables, represented by magenta.
    - REFERENCE: Represents citation references within the document, also represented by purple.
    - Footer: Represents footer of the document, represented as orange.
"""


class LayoutType(Enum):
    UNKNOWN = (0, "unknown", Color.Purple)
    TITLE = (1, "title", Color.Red)
    TEXT = (2, "text", Color.Green)
    FIGURE = (3, "figure", Color.Blue)
    FIGURE_CAPTION = (4, "figure_caption", Color.Yellow)
    TABLE = (5, "table", Color.Cyan)
    TABLE_CAPTION = (6, "table_caption", Color.Magenta)
    REFERENCE = (7, "reference", Color.Purple)
    FOOTER = (8, "footer", Color.Orange)

    def __str__(self) -> str:
        return str(self.value[1])  # Returns the string part (type)

    @property
    def number(self) -> int:
        return self.value[0]  # Returns the numerical identifier

    @property
    def type(self) -> str:
        return self.value[1]  # Returns the type

    @property
    def color(self) -> tuple[int, int, int]:
        return self.value[2]  # Returns the color

    @staticmethod
    def get_class_id(text: str) -> int:
        try:
            return LayoutType[text.upper()].number
        except KeyError:
            logging.warning(f"Invalid layout type {text}")
            return 0

    @staticmethod
    def get_type(text: str) -> LayoutType:
        try:
            return LayoutType[text.upper()]
        except KeyError:
            logging.warning(f"Invalid layout type {text}")
            return LayoutType.UNKNOWN

    @classmethod
    def get_annotation(cls) -> list[tuple[int, str, tuple[int, int, int]]]:
        return [(layout.number, layout.type, layout.color) for layout in cls]


"""
Layout Class:
    The main purpose of this class is to:
    1. Keep track of the layout types (including type, numbering)
    2. Save the detections for each layout (text, img or table)
    3. Save the bounding box of each detected layout
    4. Generate the recovery text document
"""


class Layout:
    def __init__(self, page_number: int, show_unknown: bool = False):
        self.counts = {layout_type: 0 for layout_type in LayoutType}
        self.records: dict[LayoutType, Any] = {layout_type: [] for layout_type in LayoutType}
        self.recovery = """"""
        self.page_number = page_number
        self.show_unknown = show_unknown

    def add(
        self,
        layout_type: LayoutType,
        bounding_box: list[int],
        detections: Optional[Iterable[dict[str, Any]]] = None,
        table: Optional[str] = None,
        figure: Optional[dict[str, Any]] = None,
    ) -> None:
        if layout_type in LayoutType:
            self.counts[layout_type] += 1
            name = f"{layout_type}{self.counts[layout_type]}"
            logging.info(f"Saved layout type {layout_type} with name: {name}")
            self.records[layout_type].append({
                "type": layout_type,
                "name": name,
                "bounding_box": bounding_box,
                "detections": detections,
                "table": table,
            })
            if layout_type != LayoutType.UNKNOWN or self.show_unknown:  # Discards the unknown layout types detections
                path = f"recording://page_{self.page_number}/Image/{layout_type.type.title()}/{name.title()}"
                self.recovery += f"\n\n## [{name.title()}]({path})\n\n"  # Log Type as Heading
                # Enhancement - Logged image for Figure type TODO(#6517)
                if layout_type == LayoutType.TABLE:
                    if table:
                        self.recovery += table  # Log details (table)
                elif detections:
                    for index, detection in enumerate(detections):
                        path_text = f"recording://page_{self.page_number}/Image/{layout_type.type.title()}/{name.title()}/Detections/{index}"
                        self.recovery += f' [{detection["text"]}]({path_text})'  # Log details (text)
        else:
            logging.warning(f"Invalid layout type detected: {layout_type}")

    def get_count(self, layout_type: LayoutType) -> int:
        if layout_type in LayoutType:
            return self.counts[layout_type]
        else:
            raise ValueError("Invalid layout type")

    def get_records(self) -> dict[LayoutType, list[dict[str, Any]]]:
        return self.records

    def save_all_layouts(self, results: list[dict[str, Any]]) -> None:
        for line in results:
            self.save_layout_data(line)
        for layout_type in LayoutType:
            logging.info(f"Number of detections for type {layout_type}: {self.counts[layout_type]}")

    def save_layout_data(self, line: dict[str, Any]) -> None:
        type = line.get("type", "empty")
        box = line.get("bbox", [0, 0, 0, 0])
        layout_type = LayoutType.get_type(type)
        detections, table, img = [], None, None
        if layout_type == LayoutType.TABLE:
            table = self.get_table_markdown(line)
        elif layout_type == LayoutType.FIGURE:
            detections = self.get_detections(line)
            img = line.get("img")  # Currently not in use
        else:
            detections = self.get_detections(line)
        self.add(layout_type, box, detections=detections, table=table, figure=img)

    @staticmethod
    def get_detections(line: dict[str, Any]) -> list[dict[str, Any]]:
        detections = []
        results = line.get("res")
        if results is not None:
            for i, result in enumerate(results):
                text = result.get("text")
                confidence = result.get("confidence")
                box = result.get("text_region")
                x_min, y_min = box[0]
                x_max, y_max = box[2]
                new_box = [x_min, y_min, x_max, y_max]
                detections.append({"id": i, "text": text, "confidence": confidence, "box": new_box})
        return detections

    # Safely attempt to extract the HTML table from the results
    @staticmethod
    def get_table_markdown(line: dict[str, Any]) -> str:
        try:
            html_table = line.get("res", {}).get("html")
            if not html_table:
                return "No table found."

            dataframes = pd.read_html(html_table)
            if not dataframes:
                return "No data extracted from the table."

            markdown_table = dataframes[0].to_markdown()
            return markdown_table  # type: ignore[no-any-return]

        except Exception as e:
            return f"Error processing the table: {str(e)}"


def process_layout_records(log_queue: SimpleQueue[Any], layout: Layout) -> LayoutStructure:
    paths, detections_paths = [], []
    zoom_paths: list[rrb.Spatial2DView] = []
    zoom_paths_figures: list[rrb.Spatial2DView] = []
    zoom_paths_tables: list[rrb.Spatial2DView] = []
    zoom_paths_texts: list[rrb.Spatial2DView] = []

    page_path = f'page_{layout.page_number}'
    for layout_type in LayoutType:
        for record in layout.records[layout_type]:
            record_name = record["name"].title()
            record_base_path = f"{page_path}/Image/{layout_type.type.title()}/{record_name}"
            paths.append(f"-{record_base_path}/**")
            detections_paths.append(f"-{record_base_path}/Detections/**")

            # Log bounding box
            log_queue.put([
                "log",
                record_base_path,
                [
                    rr.Boxes2D(
                        array=record["bounding_box"],
                        array_format=rr.Box2DFormat.XYXY,
                        labels=[str(layout_type.type)],
                        class_ids=[str(layout_type.number)],
                    ),
                    rr.AnyValues(name=record_name),
                ],
            ])

            log_detections(log_queue, layout_type, record, record_base_path)

            # Prepare zoom path views
            update_zoom_paths(
                layout,
                layout_type,
                record,
                paths,
                page_path,
                zoom_paths,
                zoom_paths_figures,
                zoom_paths_tables,
                zoom_paths_texts,
            )

    return paths, detections_paths, zoom_paths_figures, zoom_paths_tables, zoom_paths_texts


def log_detections(log_queue: SimpleQueue, layout_type: LayoutType, record: dict[str, Any], page_path: str) -> None:
    if layout_type == LayoutType.TABLE:
        log_queue.put([
            "log",
            f"Extracted{record['name']}",
            [rr.TextDocument(record["table"], media_type=rr.MediaType.MARKDOWN)],
        ])
    else:
        for detection in record.get("detections", []):
            log_queue.put([
                "log",
                f"{page_path}/Detections/{detection['id']}",
                [
                    rr.Boxes2D(
                        array=detection["box"], array_format=rr.Box2DFormat.XYXY, class_ids=[str(layout_type.number)]
                    ),
                    rr.AnyValues(
                        DetectionID=detection["id"], Text=detection["text"], Confidence=detection["confidence"]
                    ),
                ],
            ])


def update_zoom_paths(
    layout: Layout,
    layout_type: LayoutType,
    record: dict[str, Any],
    paths: list[str],
    page_path: str,
    zoom_paths: list[rrb.Spatial2DView],
    zoom_paths_figures: list[rrb.Spatial2DView],
    zoom_paths_tables: list[rrb.Spatial2DView],
    zoom_paths_texts: list[rrb.Spatial2DView],
) -> None:
    if layout_type in [LayoutType.FIGURE, LayoutType.TABLE, LayoutType.TEXT]:
        current_paths = paths.copy()
        current_paths.remove(f"-{page_path}/Image/{layout_type.type.title()}/{record['name'].title()}/**")
        bounds = rrb.VisualBounds2D(
            x_range=[record["bounding_box"][0] - 10, record["bounding_box"][2] + 10],
            y_range=[record["bounding_box"][1] - 10, record["bounding_box"][3] + 10],
        )

        # Add to zoom paths
        view = rrb.Spatial2DView(
            name=record["name"].title(), contents=[f"{page_path}/Image/**"] + current_paths, visual_bounds=bounds
        )
        zoom_paths.append(view)

        # Add to type-specific zoom paths
        if layout_type == LayoutType.FIGURE:
            zoom_paths_figures.append(view)
        elif layout_type == LayoutType.TABLE:
            zoom_paths_tables.append(view)
        elif layout_type != LayoutType.UNKNOWN or layout.show_unknown:
            zoom_paths_texts.append(view)


def generate_blueprint(
    layouts: list[Layout],
    processed_layouts: list[LayoutStructure],
) -> rrb.Blueprint:
    page_tabs = []
    for layout, processed_layout in zip(layouts, processed_layouts):
        page_path = f'page_{layout.page_number}'
        paths, detections_paths, zoom_paths_figures, zoom_paths_tables, zoom_paths_texts = processed_layout

        section_tabs = []
        content_data: dict[str, Any] = {
            "Figures": zoom_paths_figures,
            "Tables": zoom_paths_tables,
            "Texts": zoom_paths_texts,
        }

        for name, paths in content_data.items():
            if paths:
                section_tabs.append(rrb.Tabs(*paths, name=name))  # type: ignore[arg-type]

        page_tabs.append(
            rrb.Vertical(
                rrb.Horizontal(
                    rrb.Spatial2DView(
                        name="Layout",
                        origin=f"{page_path}/Image/",
                        contents=[f"{page_path}/Image/**"] + detections_paths,
                    ),
                    rrb.Spatial2DView(name="Detections", contents=[f"{page_path}/Image/**"]),
                    rrb.Vertical(
                        rrb.TextDocumentView(name="Progress", contents=["progress/**"]),
                        rrb.TextDocumentView(name="Recovery", contents=f"{page_path}/Recovery"),
                        row_shares=[1, 4]
                    )
                ),
                rrb.Horizontal(*section_tabs),
                name=page_path,
                row_shares=[4, 3],
            )
        )

    return rrb.Blueprint(
        rrb.Tabs(*page_tabs),
        collapse_panels=True,
    )


def detect_and_log_layouts(log_queue: SimpleQueue[Any], file_path: str, start_page: int = 1, end_page: int | None = -1) -> None:
    if end_page == -1:
        end_page = start_page + PAGE_LIMIT-1
    if end_page < start_page:
        end_page = start_page
    print(start_page, end_page)

    images: list[npt.NDArray[np.uint8]] = []
    if file_path.endswith(".pdf"):
        # convert pdf to images
        images.extend(np.array(img, dtype=np.uint8) for img in pdf2image.convert_from_path(file_path, first_page=start_page, last_page=end_page))
        print(len(images))
        if len(images) > PAGE_LIMIT:
            log_queue.put([
                "log",
                "progress",
                [rr.TextDocument(f"Too many pages requsted: {len(images)} requested but the limit is {PAGE_LIMIT}")],
            ])
            return
    else:
        # read image
        img = cv2.imread(file_path)
        coloured_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        images.append(coloured_image.astype(np.uint8))

    # Extracte the layout from each image
    layouts: list[Layout] = []
    page_numbers = [i + start_page for i in range(len(images))]
    processed_layouts: list[LayoutStructure] = []
    for i, (image, page_number) in enumerate(zip(images, page_numbers)):
        layouts.append(detect_and_log_layout(log_queue, image, page_number))

        # Generate and send a blueprint based on the detected layouts
        processed_layouts.append(
            process_layout_records(
                log_queue,
                layouts[-1],
            )
        )
        logging.info("Sending blueprint...")
        blueprint = generate_blueprint(layouts, processed_layouts)
        log_queue.put(["blueprint", blueprint])
        logging.info("Blueprint sent...")


def detect_and_log_layout(log_queue: SimpleQueue, coloured_image: npt.NDArray[np.uint8], page_number: int) -> Layout:
    # Layout Object - This will contain the detected layouts and their detections
    layout = Layout(page_number)
    page_path = f'page_{page_number}'

    # Log Image and add Annotation Context
    log_queue.put([
        "log",
        f"{page_path}/Image",
        [rr.Image(coloured_image)],
    ])
    log_queue.put([
        "log",
        f"{page_path}/Image",
        # The annotation is defined in the Layout class based on its properties
        [rr.AnnotationContext(LayoutType.get_annotation())],
        {
            "static": True,
        },
    ])

    # Paddle Model - Getting Predictions
    logging.info("Start detection... (It usually takes more than 10-20 seconds per page)")
    ocr_model_pp = PPStructure(show_log=False, recovery=True)
    logging.info("model loaded")
    result_pp = ocr_model_pp(coloured_image)
    _, w, _ = coloured_image.shape
    result_pp = sorted_layout_boxes(result_pp, w)
    logging.info("Detection finished...")

    # Add results to the layout
    layout.save_all_layouts(result_pp)
    logging.info("All results are saved...")

    # Recovery Text Document for the detected text
    log_queue.put([
        "log",
        f"{page_path}/Recovery",
        [rr.TextDocument(layout.recovery, media_type=rr.MediaType.MARKDOWN)],
    ])

    return layout