Spaces:
Build error
Build error
File size: 15,453 Bytes
d323598 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
from __future__ import annotations
import math
from contextlib import contextmanager
from typing import Any, Union
import torch
from einops import rearrange
from omegaconf import ListConfig, OmegaConf
from pytorch_lightning import LightningModule
from safetensors.torch import load_file as load_safetensors
from torch.optim.lr_scheduler import LambdaLR
from ..modules import UNCONDITIONAL_CONFIG
from ..modules.autoencoding.temporal_ae import VideoDecoder
from ..modules.diffusionmodules.wrappers import OPENAIUNETWRAPPER
from ..modules.ema import LitEma
from ..util import default, disabled_train, get_obj_from_str, instantiate_from_config
class DiffusionEngine(LightningModule):
def __init__(
self,
network_config,
denoiser_config,
first_stage_config,
conditioner_config: Union[None, dict, ListConfig, OmegaConf] = None,
sampler_config: Union[None, dict, ListConfig, OmegaConf] = None,
optimizer_config: Union[None, dict, ListConfig, OmegaConf] = None,
scheduler_config: Union[None, dict, ListConfig, OmegaConf] = None,
loss_fn_config: Union[None, dict, ListConfig, OmegaConf] = None,
network_wrapper: Union[None, str] = None,
ckpt_path: Union[None, str] = None,
use_ema: bool = False,
ema_decay_rate: float = 0.9999,
scale_factor: float = 1.0,
disable_first_stage_autocast=False,
input_key: str = "img",
log_keys: Union[list, None] = None,
no_cond_log: bool = False,
compile_model: bool = False,
en_and_decode_n_samples_a_time: int = 1,
num_frames: int = 25,
slow_spatial_layers: bool = False,
train_peft_adapters: bool = False,
replace_cond_frames: bool = False,
fixed_cond_frames: Union[list, None] = None
):
super().__init__()
self.log_keys = log_keys
self.input_key = input_key
self.optimizer_config = default(
optimizer_config, {"target": "torch.optim.AdamW"}
)
model = instantiate_from_config(network_config)
self.model = get_obj_from_str(
default(network_wrapper, OPENAIUNETWRAPPER)
)(
model, compile_model=compile_model
)
self.denoiser = instantiate_from_config(denoiser_config)
self.sampler = (
instantiate_from_config(sampler_config)
if sampler_config is not None
else None
)
self.conditioner = instantiate_from_config(
default(conditioner_config, UNCONDITIONAL_CONFIG)
)
self.scheduler_config = scheduler_config
self._init_first_stage(first_stage_config)
self.loss_fn = (
instantiate_from_config(loss_fn_config)
if loss_fn_config is not None
else None
)
# if slow_spatial_layers:
# for n, p in self.model.named_parameters():
# if "time_stack" not in n:
# p.requires_grad = False
# elif train_peft_adapters:
# for n, p in self.model.named_parameters():
# if "adapter" not in n and p.requires_grad:
# p.requires_grad = False
self.use_ema = use_ema
self.ema_decay_rate = ema_decay_rate
if use_ema:
self.model_ema = LitEma(self.model, decay=ema_decay_rate)
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}")
self.scale_factor = scale_factor
self.disable_first_stage_autocast = disable_first_stage_autocast
self.no_cond_log = no_cond_log
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path)
self.en_and_decode_n_samples_a_time = en_and_decode_n_samples_a_time
self.num_frames = num_frames
self.slow_spatial_layers = slow_spatial_layers
self.train_peft_adapters = train_peft_adapters
self.replace_cond_frames = replace_cond_frames
self.fixed_cond_frames = fixed_cond_frames
def reinit_ema(self):
if self.use_ema:
self.model_ema = LitEma(self.model, decay=self.ema_decay_rate)
print(f"Reinitializing EMAs of {len(list(self.model_ema.buffers()))}")
def init_from_ckpt(self, path: str) -> None:
if path.endswith("ckpt"):
svd = torch.load(path, map_location="cpu")["state_dict"]
elif path.endswith("bin"): # for deepspeed merged checkpoints
svd = torch.load(path, map_location="cpu")
for k in list(svd.keys()): # remove the prefix
if "_forward_module" in k:
svd[k.replace("_forward_module.", "")] = svd[k]
del svd[k]
elif path.endswith("safetensors"):
svd = load_safetensors(path)
else:
raise NotImplementedError
missing, unexpected = self.load_state_dict(svd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
print(f"Missing keys: {missing}")
if len(unexpected) > 0:
print(f"Unexpected keys: {unexpected}")
def _init_first_stage(self, config):
model = instantiate_from_config(config).eval()
model.train = disabled_train
for param in model.parameters():
param.requires_grad = False
self.first_stage_model = model
def get_input(self, batch):
# assuming unified data format, dataloader returns a dict
# image tensors should be scaled to -1 ... 1 and in bchw format
input_shape = batch[self.input_key].shape
if len(input_shape) != 4: # is an image sequence
assert input_shape[1] == self.num_frames
batch[self.input_key] = rearrange(batch[self.input_key], "b t c h w -> (b t) c h w")
return batch[self.input_key]
@torch.no_grad()
def decode_first_stage(self, z, overlap=3):
z = z / self.scale_factor
n_samples = default(self.en_and_decode_n_samples_a_time, z.shape[0])
all_out = list()
with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast):
if overlap < n_samples:
previous_z = z[:overlap]
for current_z in z[overlap:].split(n_samples - overlap, dim=0):
if isinstance(self.first_stage_model.decoder, VideoDecoder):
kwargs = {"timesteps": current_z.shape[0] + overlap}
else:
kwargs = dict()
context_z = torch.cat((previous_z, current_z), dim=0)
previous_z = current_z[-overlap:]
out = self.first_stage_model.decode(context_z, **kwargs)
if not all_out:
all_out.append(out)
else:
all_out[-1][-overlap:] = (all_out[-1][-overlap:] + out[:overlap]) / 2
all_out.append(out[overlap:])
else:
for current_z in z.split(n_samples, dim=0):
if isinstance(self.first_stage_model.decoder, VideoDecoder):
kwargs = {"timesteps": current_z.shape[0]}
else:
kwargs = dict()
out = self.first_stage_model.decode(current_z, **kwargs)
all_out.append(out)
out = torch.cat(all_out, dim=0)
return out
@torch.no_grad()
def encode_first_stage(self, x):
n_samples = default(self.en_and_decode_n_samples_a_time, x.shape[0])
n_rounds = math.ceil(x.shape[0] / n_samples)
all_out = list()
torch.cuda.synchronize()
print(f"Encoding {n_rounds} rounds of {n_samples} samples each")
with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast):
for n in range(n_rounds):
torch.cuda.synchronize()
print("start encoding round", n)
out = self.first_stage_model.encode(
x[n * n_samples: (n + 1) * n_samples]
)
all_out.append(out)
torch.cuda.synchronize()
print("finished encoding round", n)
z = torch.cat(all_out, dim=0)
z = z * self.scale_factor
return z
def forward(self, x, batch):
loss = self.loss_fn(self.model, self.denoiser, self.conditioner, x, batch) # go to StandardDiffusionLoss
loss_mean = loss.mean()
loss_dict = {"loss": loss_mean}
return loss_mean, loss_dict
def shared_step(self, batch: dict) -> Any:
x = self.get_input(batch)
x = self.encode_first_stage(x)
batch["global_step"] = self.global_step
loss, loss_dict = self(x, batch)
return loss, loss_dict
def training_step(self, batch, batch_idx):
loss, loss_dict = self.shared_step(batch)
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True)
self.log("global_step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False)
if self.scheduler_config is not None:
lr = self.optimizers().param_groups[0]["lr"]
self.log("lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
return loss
# @torch.no_grad()
# def validation_step(self, batch, batch_idx):
# loss, loss_dict = self.shared_step(batch)
# self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True)
@torch.no_grad()
def test_step(self, batch, batch_idx):
_loss, loss_dict = self.shared_step(batch)
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=False)
def on_train_start(self, *args, **kwargs):
if self.sampler is None or self.loss_fn is None:
raise ValueError("Sampler and loss function need to be set for training")
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self.model)
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.model.parameters())
self.model_ema.copy_to(self.model)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.model.parameters())
if context is not None:
print(f"{context}: Restored training weights")
def instantiate_optimizer_from_config(self, params, lr, cfg):
return get_obj_from_str(cfg["target"])(
params, lr=lr, **cfg.get("params", dict())
)
def configure_optimizers(self):
lr = self.learning_rate
if self.slow_spatial_layers:
param_dicts = [
{
"params": [p for n, p in self.model.named_parameters() if "time_stack" in n]
},
{
"params": [p for n, p in self.model.named_parameters() if "time_stack" not in n],
"lr": lr * 0.1
}
]
elif self.train_peft_adapters:
param_dicts = [
{
"params": [p for n, p in self.model.named_parameters() if "adapter" in n]
}
]
else:
param_dicts = [
{
"params": list(self.model.parameters())
}
]
for embedder in self.conditioner.embedders:
if embedder.is_trainable:
param_dicts.append(
{
"params": list(embedder.parameters())
}
)
opt = self.instantiate_optimizer_from_config(param_dicts, lr, self.optimizer_config)
if self.scheduler_config is not None:
scheduler = instantiate_from_config(self.scheduler_config)
print("Setting up LambdaLR scheduler...")
scheduler = [
{
"scheduler": LambdaLR(opt, lr_lambda=scheduler.schedule),
"interval": "step",
"frequency": 1
}
]
return [opt], scheduler
else:
return opt
@torch.no_grad()
def sample(
self,
cond: dict,
cond_frame=None,
uc: Union[dict, None] = None,
N: int = 25,
shape: Union[None, tuple, list] = None,
**kwargs
):
randn = torch.randn(N, *shape).to(self.device)
cond_mask = torch.zeros(N).to(self.device)
if self.replace_cond_frames:
assert self.fixed_cond_frames
cond_indices = self.fixed_cond_frames
cond_mask = rearrange(cond_mask, "(b t) -> b t", t=self.num_frames)
cond_mask[:, cond_indices] = 1
cond_mask = rearrange(cond_mask, "b t -> (b t)")
def denoiser(input, sigma, c, cond_mask):
return self.denoiser(self.model, input, sigma, c, cond_mask, **kwargs)
samples = self.sampler( # go to EulerEDMSampler
denoiser, randn, cond, uc=uc, cond_frame=cond_frame, cond_mask=cond_mask
)
return samples
@torch.no_grad()
def log_images(
self,
batch: dict,
N: int = 25,
sample: bool = True,
ucg_keys: list[str] = None,
**kwargs
) -> dict:
conditioner_input_keys = [e.input_key for e in self.conditioner.embedders if e.ucg_rate > 0.0]
if ucg_keys:
assert all(map(lambda x: x in conditioner_input_keys, ucg_keys)), (
"Each defined ucg key for sampling must be in the provided conditioner input keys, "
f"but we have {ucg_keys} vs. {conditioner_input_keys}"
)
else:
ucg_keys = conditioner_input_keys
log = dict()
x = self.get_input(batch)
c, uc = self.conditioner.get_unconditional_conditioning(
batch,
force_uc_zero_embeddings=ucg_keys
if len(self.conditioner.embedders) > 0
else list()
)
sampling_kwargs = dict()
N = min(x.shape[0], N)
x = x.to(self.device)[:N]
z = self.encode_first_stage(x)
x_reconstruct = self.decode_first_stage(z)
for k in c:
if isinstance(c[k], torch.Tensor):
c[k], uc[k] = map(lambda y: y[k][:N].to(self.device), (c, uc))
if c[k].shape[0] < N:
c[k] = c[k][[0]]
if uc[k].shape[0] < N:
uc[k] = uc[k][[0]]
if sample:
with self.ema_scope("Plotting"):
samples = self.sample(
c, cond_frame=z, shape=z.shape[1:], uc=uc, N=N, **sampling_kwargs
)
samples = self.decode_first_stage(samples)
log["samples"] = log["samples_mp4"] = samples
log["inputs"] = log["inputs_mp4"] = x
log["targets"] = log["targets_mp4"] = x_reconstruct
return log
|