File size: 10,234 Bytes
d323598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from __future__ import annotations

from abc import abstractmethod
from typing import Iterable, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.utils.checkpoint import checkpoint

from ...modules.attention import SpatialTransformer
from ...modules.video_attention import SpatialVideoTransformer
from .util import avg_pool_nd, conv_nd, linear, normalization, timestep_embedding, zero_module


class TimestepBlock(nn.Module):
    """Any module where forward() takes timestep embeddings as a second argument."""

    @abstractmethod
    def forward(self, x: torch.Tensor, emb: torch.Tensor):
        """Apply the module to `x` given `emb` timestep embeddings."""


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """A sequential module that passes timestep embeddings to the children that support it as an extra input."""

    def forward(
            self,
            x: torch.Tensor,
            emb: torch.Tensor,
            context: Optional[torch.Tensor] = None,
            time_context: Optional[int] = None,
            num_frames: Optional[int] = None
    ):
        from .video_model import VideoResBlock

        for layer in self:
            if isinstance(layer, VideoResBlock):
                x = layer(x, emb, num_frames)
            elif isinstance(layer, TimestepBlock):
                x = layer(x, emb)
            elif isinstance(layer, SpatialVideoTransformer):
                x = layer(x, context, time_context, num_frames)
            elif isinstance(layer, SpatialTransformer):
                x = layer(x, context)
            else:
                x = layer(x)
        return x


class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.

    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then upsampling occurs in the inner-two dimensions.
    """

    def __init__(
            self,
            channels: int,
            use_conv: bool,
            dims: int = 2,
            out_channels: Optional[int] = None,
            padding: int = 1,
            third_up: bool = False,
            kernel_size: int = 3,
            scale_factor: int = 2
    ):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        self.third_up = third_up
        self.scale_factor = scale_factor
        if use_conv:
            self.conv = conv_nd(dims, self.channels, self.out_channels, kernel_size, padding=padding)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        assert x.shape[1] == self.channels
        if self.dims == 3:
            t_factor = 1 if not self.third_up else self.scale_factor
            x = F.interpolate(
                x,
                (
                    t_factor * x.shape[2],
                    x.shape[3] * self.scale_factor,
                    x.shape[4] * self.scale_factor
                ),
                mode="nearest"
            )
        else:
            x = F.interpolate(x, scale_factor=self.scale_factor, mode="nearest")
        if self.use_conv:
            x = self.conv(x)
        return x


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.

    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions.
    """

    def __init__(
            self,
            channels: int,
            use_conv: bool,
            dims: int = 2,
            out_channels: Optional[int] = None,
            padding: int = 1,
            third_down: bool = False
    ):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else ((1, 2, 2) if not third_down else (2, 2, 2))
        if use_conv:
            print(f"Building a downsample layer with {dims} dims")
            print(
                f"Settings are: \n in-chn: {self.channels}, out-chn: {self.out_channels}, "
                f"kernel-size: 3, stride: {stride}, padding: {padding}"
            )
            self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding)
        else:
            assert self.channels == self.out_channels
            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        assert x.shape[1] == self.channels
        return self.op(x)


class ResBlock(TimestepBlock):
    """
    A residual block that can optionally change the number of channels.

    :param channels: the number of input channels.
    :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout.
    :param out_channels: if specified, the number of out channels.
    :param use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the
        channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param use_checkpoint: if True, use gradient checkpointing on this module.
    :param up: if True, use this block for upsampling.
    :param down: if True, use this block for downsampling.
    """

    def __init__(
            self,
            channels: int,
            emb_channels: int,
            dropout: float,
            out_channels: Optional[int] = None,
            use_conv: bool = False,
            use_scale_shift_norm: bool = False,
            dims: int = 2,
            use_checkpoint: bool = False,
            up: bool = False,
            down: bool = False,
            kernel_size: int = 3,
            exchange_temb_dims: bool = False,
            skip_t_emb: bool = False,
            causal: bool = False
    ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm
        self.exchange_temb_dims = exchange_temb_dims

        if isinstance(kernel_size, Iterable):
            padding = [k // 2 for k in kernel_size]
        else:
            padding = kernel_size // 2

        self.in_layers = nn.Sequential(
            normalization(channels),
            nn.SiLU(),
            conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, causal=causal)
        )

        self.updown = up or down

        if up:
            self.h_upd = Upsample(channels, False, dims)
            self.x_upd = Upsample(channels, False, dims)
        elif down:
            self.h_upd = Downsample(channels, False, dims)
            self.x_upd = Downsample(channels, False, dims)
        else:
            self.h_upd = self.x_upd = nn.Identity()

        self.skip_t_emb = skip_t_emb
        self.emb_out_channels = (
            2 * self.out_channels if use_scale_shift_norm else self.out_channels
        )
        if self.skip_t_emb:
            print(f"Skipping timestep embedding in {self.__class__.__name__}")
            assert not self.use_scale_shift_norm
            self.emb_layers = None
            self.exchange_temb_dims = False
        else:
            self.emb_layers = nn.Sequential(
                nn.SiLU(),
                linear(emb_channels, self.emb_out_channels)
            )

        self.out_layers = nn.Sequential(
            normalization(self.out_channels),
            nn.SiLU(),
            nn.Dropout(p=dropout),
            zero_module(
                conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, causal=causal)
            )
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding)
        else:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)

    def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.

        :param x: an [N x C x ...] Tensor of features.
        :param emb: an [N x emb_channels] Tensor of timestep embeddings.

        :return: an [N x C x ...] Tensor of outputs.
        """

        if self.use_checkpoint:
            return checkpoint(self._forward, x, emb)
        else:
            return self._forward(x, emb)

    def _forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
        if self.updown:
            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
            h = in_rest(x)
            h = self.h_upd(h)
            x = self.x_upd(x)
            h = in_conv(h)
        else:
            h = self.in_layers(x)

        if self.skip_t_emb:
            emb_out = torch.zeros_like(h)
        else:
            emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            scale, shift = torch.chunk(emb_out, 2, dim=1)
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            if self.exchange_temb_dims:
                emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
            h = h + emb_out
            h = self.out_layers(h)
        return self.skip_connection(x) + h


class Timestep(nn.Module):
    def __init__(self, dim: int):
        super().__init__()
        self.dim = dim

    def forward(self, t: torch.Tensor) -> torch.Tensor:
        return timestep_embedding(t, self.dim)