Vista / vista /vwm /modules /attention.py
Leonard Bruns
Add Vista example
d323598
from __future__ import annotations
import math
from inspect import isfunction
from typing import Any, Optional
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from packaging import version
from torch import nn
from torch.utils.checkpoint import checkpoint
if version.parse(torch.__version__) >= version.parse("2.0.0"):
SDP_IS_AVAILABLE = True
from torch.backends.cuda import SDPBackend, sdp_kernel
BACKEND_MAP = {
SDPBackend.MATH: {
"enable_math": True,
"enable_flash": False,
"enable_mem_efficient": False
},
SDPBackend.FLASH_ATTENTION: {
"enable_math": False,
"enable_flash": True,
"enable_mem_efficient": False
},
SDPBackend.EFFICIENT_ATTENTION: {
"enable_math": False,
"enable_flash": False,
"enable_mem_efficient": True
},
None: {
"enable_math": True,
"enable_flash": True,
"enable_mem_efficient": True
}
}
else:
from contextlib import nullcontext
SDP_IS_AVAILABLE = False
sdp_kernel = nullcontext
BACKEND_MAP = dict()
print(
f"No SDP backend available, likely because you are running in pytorch versions < 2.0. "
f"In fact, you are using PyTorch {torch.__version__}. You might want to consider upgrading"
)
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILABLE = True
except:
XFORMERS_IS_AVAILABLE = False
print("No module `xformers`, processing without it")
def exists(val):
return val is not None
def uniq(arr):
return {el: True for el in arr}.keys()
def default(val, d):
if exists(val):
return val
else:
return d() if isfunction(d) else d
def max_neg_value(t):
return -torch.finfo(t.dtype).max
def init_(tensor):
dim = tensor.shape[-1]
std = 1 / math.sqrt(dim)
tensor.uniform_(-std, std)
return tensor
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
class FeedForward(nn.Module):
def __init__(
self,
dim,
dim_out=None,
mult=4,
glu=False,
dropout=0.0,
zero_init=False
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = (
nn.Sequential(
nn.Linear(dim, inner_dim),
nn.GELU()
)
if not glu
else GEGLU(dim, inner_dim)
)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out)
)
if zero_init:
nn.init.zeros_(self.net[-1].weight)
nn.init.zeros_(self.net[-1].bias)
def forward(self, x):
return self.net(x)
def zero_module(module):
"""Zero out the parameters of a module and return it."""
for p in module.parameters():
p.detach().zero_()
return module
def Normalize(in_channels):
return nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
class LinearAttention(nn.Module):
def __init__(self, dim, heads=4, dim_head=32):
super().__init__()
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
def forward(self, x):
_b, _c, h, w = x.shape
qkv = self.to_qkv(x)
q, k, v = rearrange(
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
)
k = k.softmax(dim=-1)
context = torch.einsum("bhdn,bhen->bhde", k, v)
out = torch.einsum("bhde,bhdn->bhen", context, q)
out = rearrange(out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w)
return self.to_out(out)
class CrossAttention(nn.Module): # not used, never mind
def __init__(
self,
query_dim,
context_dim=None,
heads=8,
dim_head=64,
dropout=0.0,
backend=None,
zero_init=False,
**kwargs
):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim),
nn.Dropout(dropout)
)
self.backend = backend
if zero_init:
nn.init.zeros_(self.to_out[0].weight)
nn.init.zeros_(self.to_out[0].bias)
def forward(
self,
x,
context=None,
mask=None,
additional_tokens=None,
n_times_crossframe_attn_in_self=0,
**kwargs
):
num_heads = self.heads
if additional_tokens is not None:
# get the number of masked tokens at the beginning of the output sequence
n_tokens_to_mask = additional_tokens.shape[1]
# add additional token
x = torch.cat((additional_tokens, x), dim=1)
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
if n_times_crossframe_attn_in_self:
# reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
assert x.shape[0] % n_times_crossframe_attn_in_self == 0
n_cp = x.shape[0] // n_times_crossframe_attn_in_self
k = repeat(
k[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
)
v = repeat(
v[::n_times_crossframe_attn_in_self], "b ... -> (b n) ...", n=n_cp
)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=num_heads), (q, k, v))
with sdp_kernel(**BACKEND_MAP[self.backend]):
out = F.scaled_dot_product_attention(q, k, v, attn_mask=mask) # scale is dim_head ** -0.5 per default
del q, k, v
out = rearrange(out, "b h n d -> b n (h d)", h=num_heads)
if additional_tokens is not None:
# remove additional token
out = out[:, n_tokens_to_mask:]
return self.to_out(out)
class MemoryEfficientCrossAttention(nn.Module): # we are using this implementation
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
def __init__(
self,
query_dim,
context_dim=None,
heads=8,
dim_head=64,
dropout=0.0,
zero_init=False,
causal=False,
add_lora=False,
lora_rank=16,
lora_scale=1.0,
action_control=False,
**kwargs
):
super().__init__()
print(
f"Setting up {self.__class__.__name__}. "
f"Query dim is {query_dim}, "
f"context_dim is {context_dim} and using {heads} heads with a dimension of {dim_head}"
)
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.heads = heads
self.dim_head = dim_head
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim),
nn.Dropout(dropout)
)
self.attention_op: Optional[Any] = None
if causal:
self.attn_bias = xformers.ops.LowerTriangularMask()
else:
self.attn_bias = None
if zero_init:
nn.init.zeros_(self.to_out[0].weight)
nn.init.zeros_(self.to_out[0].bias)
self.add_lora = add_lora
if add_lora:
self.lora_scale = lora_scale
self.q_adapter_down = nn.Linear(query_dim, lora_rank, bias=False)
nn.init.normal_(self.q_adapter_down.weight, std=1 / lora_rank)
self.q_adapter_up = nn.Linear(lora_rank, inner_dim, bias=False)
nn.init.zeros_(self.q_adapter_up.weight)
self.k_adapter_down = nn.Linear(context_dim, lora_rank, bias=False)
nn.init.normal_(self.k_adapter_down.weight, std=1 / lora_rank)
self.k_adapter_up = nn.Linear(lora_rank, inner_dim, bias=False)
nn.init.zeros_(self.k_adapter_up.weight)
self.v_adapter_down = nn.Linear(context_dim, lora_rank, bias=False)
nn.init.normal_(self.v_adapter_down.weight, std=1 / lora_rank)
self.v_adapter_up = nn.Linear(lora_rank, inner_dim, bias=False)
nn.init.zeros_(self.v_adapter_up.weight)
self.out_adapter_down = nn.Linear(inner_dim, lora_rank, bias=False)
nn.init.normal_(self.out_adapter_down.weight, std=1 / lora_rank)
self.out_adapter_up = nn.Linear(lora_rank, query_dim, bias=False)
nn.init.zeros_(self.out_adapter_up.weight)
self.action_control = action_control
if action_control:
self.context_dim = context_dim
self.k_adapter_action_control = nn.Linear(128 * 19, inner_dim, bias=False)
nn.init.zeros_(self.k_adapter_action_control.weight)
self.v_adapter_action_control = nn.Linear(128 * 19, inner_dim, bias=False)
nn.init.zeros_(self.v_adapter_action_control.weight)
def forward(
self,
x,
context=None,
mask=None,
additional_tokens=None,
n_times_crossframe_attn_in_self=0,
batchify_xformers=False
):
if additional_tokens is not None:
# get the number of masked tokens at the beginning of the output sequence
n_tokens_to_mask = additional_tokens.shape[1]
# add additional token
x = torch.cat((additional_tokens, x), dim=1)
context = default(context, x)
if self.action_control:
context, context_ = context[:, :, :self.context_dim], context[:, :, self.context_dim:]
q = self.to_q(x)
k = self.to_k(context)
v = self.to_v(context)
if self.add_lora:
q += self.q_adapter_up(self.q_adapter_down(x)) * self.lora_scale
k += self.k_adapter_up(self.k_adapter_down(context)) * self.lora_scale
v += self.v_adapter_up(self.v_adapter_down(context)) * self.lora_scale
if self.action_control:
k += self.k_adapter_action_control(context_)
v += self.v_adapter_action_control(context_)
if n_times_crossframe_attn_in_self:
# reprogramming cross-frame attention as in https://arxiv.org/abs/2303.13439
assert x.shape[0] % n_times_crossframe_attn_in_self == 0
# n_cp = x.shape[0] // n_times_crossframe_attn_in_self
k = repeat(
k[::n_times_crossframe_attn_in_self],
"b ... -> (b n) ...",
n=n_times_crossframe_attn_in_self
)
v = repeat(
v[::n_times_crossframe_attn_in_self],
"b ... -> (b n) ...",
n=n_times_crossframe_attn_in_self
)
b, _, _ = q.shape
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(q, k, v)
)
if exists(mask):
raise NotImplementedError
else:
# actually compute the attention, what we cannot get enough of
if batchify_xformers:
max_bs = 32768 # >65536 will result in wrong outputs
n_batches = math.ceil(q.shape[0] / max_bs)
out = list()
for i_batch in range(n_batches):
batch = slice(i_batch * max_bs, (i_batch + 1) * max_bs)
out.append(
xformers.ops.memory_efficient_attention(
q[batch],
k[batch],
v[batch],
attn_bias=self.attn_bias,
op=self.attention_op
)
)
out = torch.cat(out, 0)
else:
out = xformers.ops.memory_efficient_attention(
q,
k,
v,
attn_bias=self.attn_bias,
op=self.attention_op
)
out = (
out.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
)
if additional_tokens is not None:
# remove additional token
out = out[:, n_tokens_to_mask:]
if self.add_lora:
return self.to_out(out) + self.out_adapter_up(self.out_adapter_down(out)) * self.lora_scale
else:
return self.to_out(out)
class BasicTransformerBlock(nn.Module):
ATTENTION_MODES = {
"softmax": CrossAttention, # vanilla attention
"softmax-xformers": MemoryEfficientCrossAttention # ampere
}
def __init__(
self,
dim,
n_heads,
d_head,
dropout=0.0,
context_dim=None,
gated_ff=True,
use_checkpoint=False,
disable_self_attn=False,
attn_mode="softmax",
sdp_backend=None,
add_lora=False,
action_control=False
):
super().__init__()
assert attn_mode in self.ATTENTION_MODES
if attn_mode != "softmax" and not XFORMERS_IS_AVAILABLE:
print(
f"Attention mode `{attn_mode}` is not available. Falling back to native attention. "
f"This is not a problem in Pytorch >= 2.0. You are running with PyTorch version {torch.__version__}"
)
attn_mode = "softmax"
elif attn_mode == "softmax" and not SDP_IS_AVAILABLE:
print("We do not support vanilla attention anymore, as it is too expensive")
if not XFORMERS_IS_AVAILABLE:
assert (
False
), "Please install xformers via e.g. `pip install xformers==0.0.16`"
else:
print("Falling back to xformers efficient attention")
attn_mode = "softmax-xformers"
attn_cls = self.ATTENTION_MODES[attn_mode]
if version.parse(torch.__version__) >= version.parse("2.0.0"):
assert sdp_backend is None or isinstance(sdp_backend, SDPBackend)
else:
assert sdp_backend is None
self.disable_self_attn = disable_self_attn
self.attn1 = attn_cls(
query_dim=dim,
context_dim=context_dim if self.disable_self_attn else None,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
backend=sdp_backend,
add_lora=add_lora
) # is a self-attn if not self.disable_self_attn
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.attn2 = attn_cls(
query_dim=dim,
context_dim=context_dim,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
backend=sdp_backend,
add_lora=add_lora,
action_control=action_control
) # is self-attn if context is None
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
self.use_checkpoint = use_checkpoint
if self.use_checkpoint:
print(f"{self.__class__.__name__} is using checkpointing")
def forward(self, x, context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0):
kwargs = {"x": x}
if context is not None:
kwargs.update({"context": context})
if additional_tokens is not None:
kwargs.update({"additional_tokens": additional_tokens})
if n_times_crossframe_attn_in_self:
kwargs.update({"n_times_crossframe_attn_in_self": n_times_crossframe_attn_in_self})
if self.use_checkpoint:
# inputs = {"x": x, "context": context}
# return checkpoint(self._forward, inputs, self.parameters(), self.use_checkpoint)
return checkpoint(self._forward, x, context)
else:
return self._forward(**kwargs)
def _forward(self, x, context=None, additional_tokens=None, n_times_crossframe_attn_in_self=0):
# spatial self-attn
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None,
additional_tokens=additional_tokens,
n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self
if not self.disable_self_attn else 0) + x
# spatial cross-attn
x = self.attn2(self.norm2(x), context=context, additional_tokens=additional_tokens) + x
# feedforward
x = self.ff(self.norm3(x)) + x
return x
class SpatialTransformer(nn.Module):
"""
Transformer block for image-like data.
First, project the input (aka embedding) and reshape to b, t, d.
Then apply standard transformer action.
Finally, reshape to image.
use_linear for more efficiency instead of the 1x1 convs.
"""
def __init__(
self,
in_channels,
n_heads,
d_head,
depth=1,
dropout=0.0,
context_dim=None,
disable_self_attn=False,
use_linear=False,
attn_type="softmax",
use_checkpoint=False,
sdp_backend=None,
add_lora=False,
action_control=False
):
super().__init__()
print(f"Constructing {self.__class__.__name__} of depth {depth} w/ {in_channels} channels and {n_heads} heads")
from omegaconf import ListConfig
if exists(context_dim) and not isinstance(context_dim, (list, ListConfig)):
context_dim = [context_dim]
if exists(context_dim) and isinstance(context_dim, list):
if depth != len(context_dim):
print(
f"WARNING: "
f"{self.__class__.__name__}: found context dims {context_dim} of depth {len(context_dim)}, "
f"which does not match the specified depth of {depth}. "
f"Setting context_dim to {depth * [context_dim[0]]} now"
)
# depth does not match context dims
assert all(
map(lambda x: x == context_dim[0], context_dim)
), "Need homogenous context_dim to match depth automatically"
context_dim = depth * [context_dim[0]]
elif context_dim is None:
context_dim = [None] * depth
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = Normalize(in_channels)
if use_linear:
self.proj_in = nn.Linear(in_channels, inner_dim)
else:
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
n_heads,
d_head,
dropout=dropout,
context_dim=context_dim[d],
disable_self_attn=disable_self_attn,
attn_mode=attn_type,
use_checkpoint=use_checkpoint,
sdp_backend=sdp_backend,
add_lora=add_lora,
action_control=action_control
)
for d in range(depth)
]
)
if use_linear:
self.proj_out = zero_module(
nn.Linear(inner_dim, in_channels)
)
else:
self.proj_out = zero_module(
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
)
self.use_linear = use_linear
def forward(self, x, context=None):
# NOTE: if no context is given, cross-attn defaults to self-attn
if not isinstance(context, list):
context = [context]
_b, _c, h, w = x.shape
x_in = x
x = self.norm(x)
if not self.use_linear:
x = self.proj_in(x)
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
if self.use_linear:
x = self.proj_in(x)
for i, block in enumerate(self.transformer_blocks):
if i > 0 and len(context) == 1:
i = 0 # use same context for each block
x = block(x, context=context[i])
if self.use_linear:
x = self.proj_out(x)
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
if not self.use_linear:
x = self.proj_out(x)
return x + x_in