Spaces:
Build error
Build error
from __future__ import annotations | |
import torch | |
from einops import repeat | |
from vwm.util import default, instantiate_from_config | |
class EDMSampling: | |
def __init__(self, p_mean=-1.2, p_std=1.2, num_frames=25): | |
self.p_mean = p_mean | |
self.p_std = p_std | |
self.num_frames = num_frames | |
def __call__(self, n_samples, rand=None): | |
bs = n_samples // self.num_frames | |
rand_init = torch.randn((bs,))[..., None] | |
rand_init = repeat(rand_init, "b 1 -> (b t)", t=self.num_frames) | |
rand = default(rand, rand_init) | |
log_sigma = self.p_mean + self.p_std * rand | |
return log_sigma.exp() | |
class DiscreteSampling: | |
def __init__(self, discretization_config, num_idx, do_append_zero=False, flip=True, num_frames=25): | |
self.num_idx = num_idx | |
self.sigmas = instantiate_from_config(discretization_config)( | |
num_idx, do_append_zero=do_append_zero, flip=flip | |
) | |
self.num_frames = num_frames | |
def idx_to_sigma(self, idx): | |
return self.sigmas[idx] | |
def __call__(self, n_samples, rand=None): | |
bs = n_samples // self.num_frames | |
rand_init = torch.randint(0, self.num_idx, (bs,))[..., None] | |
rand_init = repeat(rand_init, "b 1 -> (b t)", t=self.num_frames) | |
idx = default(rand, rand_init) | |
return self.idx_to_sigma(idx) | |