from __future__ import annotations from typing import Callable, Iterable, Union import torch from einops import rearrange from ...util import partialclass from ..diffusionmodules.model import Decoder, ResnetBlock from ..diffusionmodules.openaimodel import ResBlock class VideoResBlock(ResnetBlock): def __init__( self, out_channels, *args, dropout=0.0, video_kernel_size=3, alpha=0.0, merge_strategy="learned", **kwargs ): super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs) if video_kernel_size is None: video_kernel_size = [3, 1, 1] self.time_stack = ResBlock( channels=out_channels, emb_channels=0, dropout=dropout, dims=3, use_scale_shift_norm=False, use_conv=False, up=False, down=False, kernel_size=video_kernel_size, use_checkpoint=False, skip_t_emb=True ) self.merge_strategy = merge_strategy if self.merge_strategy == "fixed": self.register_buffer("mix_factor", torch.Tensor([alpha])) elif self.merge_strategy == "learned": self.register_parameter("mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))) else: raise ValueError(f"Unknown merge strategy {self.merge_strategy}") def get_alpha(self): if self.merge_strategy == "fixed": return self.mix_factor elif self.merge_strategy == "learned": return torch.sigmoid(self.mix_factor) else: raise NotImplementedError def forward(self, x, temb, skip_video=False, timesteps=None): if timesteps is None: timesteps = self.timesteps x = super().forward(x, temb) if not skip_video: x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) x = self.time_stack(x, temb) alpha = self.get_alpha() x = alpha * x + (1.0 - alpha) * x_mix x = rearrange(x, "b c t h w -> (b t) c h w") return x class AE3DConv(torch.nn.Conv2d): def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs): super().__init__(in_channels, out_channels, *args, **kwargs) if isinstance(video_kernel_size, Iterable): padding = [int(k // 2) for k in video_kernel_size] else: padding = int(video_kernel_size // 2) self.time_mix_conv = torch.nn.Conv3d( in_channels=out_channels, out_channels=out_channels, kernel_size=video_kernel_size, padding=padding ) def forward(self, input, timesteps, skip_video=False): x = super().forward(input) if skip_video: return x else: x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps) x = self.time_mix_conv(x) return rearrange(x, "b c t h w -> (b t) c h w") class Conv2DWrapper(torch.nn.Conv2d): def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor: return super().forward(input) class VideoDecoder(Decoder): available_time_modes = ["all", "conv-only", "attn-only"] def __init__( self, *args, video_kernel_size: Union[int, list] = 3, alpha: float = 0.0, merge_strategy: str = "learned", time_mode: str = "conv-only", **kwargs ): self.video_kernel_size = video_kernel_size self.alpha = alpha self.merge_strategy = merge_strategy self.time_mode = time_mode assert ( self.time_mode in self.available_time_modes ), f"time_mode parameter has to be in {self.available_time_modes}" super().__init__(*args, **kwargs) def get_last_layer(self, skip_time_mix=False, **kwargs): if self.time_mode == "attn-only": raise NotImplementedError else: return ( self.conv_out.time_mix_conv.weight if not skip_time_mix else self.conv_out.weight ) def _make_conv(self) -> Callable: if self.time_mode != "attn-only": return partialclass(AE3DConv, video_kernel_size=self.video_kernel_size) else: return Conv2DWrapper def _make_resblock(self) -> Callable: if self.time_mode not in ["attn-only", "only-last-conv"]: return partialclass( VideoResBlock, video_kernel_size=self.video_kernel_size, alpha=self.alpha, merge_strategy=self.merge_strategy ) else: return super()._make_resblock()