from __future__ import annotations from typing import Union import torch import torch.nn as nn from ...util import append_dims, instantiate_from_config from .denoiser_scaling import DenoiserScaling class Denoiser(nn.Module): def __init__(self, scaling_config: dict, num_frames: int = 25): super().__init__() self.scaling: DenoiserScaling = instantiate_from_config(scaling_config) self.num_frames = num_frames def possibly_quantize_sigma(self, sigma: torch.Tensor) -> torch.Tensor: return sigma def possibly_quantize_c_noise(self, c_noise: torch.Tensor) -> torch.Tensor: return c_noise def forward( self, network: nn.Module, noised_input: torch.Tensor, sigma: torch.Tensor, cond: dict, cond_mask: torch.Tensor ): sigma = self.possibly_quantize_sigma(sigma) sigma_shape = sigma.shape sigma = append_dims(sigma, noised_input.ndim) c_skip, c_out, c_in, c_noise = self.scaling(sigma) c_noise = self.possibly_quantize_c_noise(c_noise.reshape(sigma_shape)) return (network(noised_input * c_in, c_noise, cond, cond_mask, self.num_frames) * c_out + noised_input * c_skip) class DiscreteDenoiser(Denoiser): def __init__( self, scaling_config: dict, num_idx: int, discretization_config: dict, do_append_zero: bool = False, quantize_c_noise: bool = True, flip: bool = True ): super().__init__(scaling_config) sigmas = instantiate_from_config(discretization_config)( num_idx, do_append_zero=do_append_zero, flip=flip ) self.register_buffer("sigmas", sigmas) self.quantize_c_noise = quantize_c_noise def sigma_to_idx(self, sigma: torch.Tensor) -> torch.Tensor: dists = sigma - self.sigmas[:, None] return dists.abs().argmin(dim=0).view(sigma.shape) def idx_to_sigma(self, idx: Union[torch.Tensor, int]) -> torch.Tensor: return self.sigmas[idx] def possibly_quantize_sigma(self, sigma: torch.Tensor) -> torch.Tensor: return self.idx_to_sigma(self.sigma_to_idx(sigma)) def possibly_quantize_c_noise(self, c_noise: torch.Tensor) -> torch.Tensor: if self.quantize_c_noise: return self.sigma_to_idx(c_noise) else: return c_noise