from __future__ import annotations from abc import ABC, abstractmethod import torch class DenoiserScaling(ABC): @abstractmethod def __call__( self, sigma: torch.Tensor ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: pass class EDMScaling: def __init__(self, sigma_data: float = 0.5): self.sigma_data = sigma_data def __call__( self, sigma: torch.Tensor ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: c_skip = self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) c_out = sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 c_noise = 0.25 * sigma.log() return c_skip, c_out, c_in, c_noise class EpsScaling: def __call__( self, sigma: torch.Tensor ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: c_skip = torch.ones_like(sigma, device=sigma.device) c_out = -sigma c_in = 1 / (sigma ** 2 + 1.0) ** 0.5 c_noise = sigma.clone() return c_skip, c_out, c_in, c_noise class VScaling: def __call__( self, sigma: torch.Tensor ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: c_skip = 1.0 / (sigma ** 2 + 1.0) c_out = -sigma / (sigma ** 2 + 1.0) ** 0.5 c_in = 1.0 / (sigma ** 2 + 1.0) ** 0.5 c_noise = sigma.clone() return c_skip, c_out, c_in, c_noise class VScalingWithEDMcNoise(DenoiserScaling): def __call__( self, sigma: torch.Tensor ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: c_skip = 1.0 / (sigma ** 2 + 1.0) c_out = -sigma / (sigma ** 2 + 1.0) ** 0.5 c_in = 1.0 / (sigma ** 2 + 1.0) ** 0.5 c_noise = 0.25 * sigma.log() return c_skip, c_out, c_in, c_noise