""" Partially adopted from https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py and https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py and https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py. """ from __future__ import annotations import math from typing import Iterable import torch import torch.fft as fft # differentiable import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat def fourier_filter(x, scale, d_s=0.25): dtype = x.dtype x = x.type(torch.float32) # FFT x_freq = fft.fftn(x, dim=(-2, -1)) x_freq = fft.fftshift(x_freq, dim=(-2, -1)) B, C, H, W = x_freq.shape mask = torch.ones((B, C, H, W)).cuda() for h in range(H): for w in range(W): d_square = (2 * h / H - 1) ** 2 + (2 * w / W - 1) ** 2 if d_square <= 2 * d_s: mask[..., h, w] = scale x_freq = x_freq * mask # IFFT x_freq = fft.ifftshift(x_freq, dim=(-2, -1)) x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real x_filtered = x_filtered.type(dtype) return x_filtered def fourier_filter_3d(x, scale, num_frames, d_s=0.25, d_t=0.25): dtype = x.dtype x = x.type(torch.float32) x_ = rearrange(x, "(b t) c h w -> b c t h w", t=num_frames) # FFT x_freq = fft.fftn(x_, dim=(-3, -2, -1)) x_freq = fft.fftshift(x_freq, dim=(-3, -2, -1)) B, C, T, H, W = x_freq.shape mask = torch.ones((B, C, T, H, W)).cuda() for t in range(T): for h in range(H): for w in range(W): d_square = (d_s / d_t * (2 * t / T - 1)) ** 2 + (2 * h / H - 1) ** 2 + (2 * w / W - 1) ** 2 if d_square <= 2 * d_s: mask[..., t, h, w] = scale x_freq = x_freq * mask # IFFT x_freq = fft.ifftshift(x_freq, dim=(-3, -2, -1)) x_filtered = fft.ifftn(x_freq, dim=(-3, -2, -1)).real x_filtered = rearrange(x_filtered, "b c t h w -> (b t) c h w") x_filtered = x_filtered.type(dtype) return x_filtered def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2): if schedule == "linear": betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) return betas.numpy() if schedule == "scaled_linear": betas = torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 return betas.numpy() else: raise NotImplementedError(f"Unknown schedule: {schedule}") def checkpoint(func, inputs, params, flag): """ Evaluate a function without caching intermediate activations, allowing for reduced memory at the expense of extra compute in the backward pass. :param func: the function to evaluate. :param inputs: the argument sequence to pass to `func`. :param params: a sequence of parameters `func` depends on but does not explicitly take as arguments. :param flag: if False, disable gradient checkpointing. """ if flag: args = tuple(inputs) + tuple(params) return CheckpointFunction.apply(func, len(inputs), *args) else: return func(*inputs) class CheckpointFunction(torch.autograd.Function): @staticmethod def forward(ctx, run_function, length, *args): ctx.run_function = run_function ctx.input_tensors = list(args[:length]) ctx.input_params = list(args[length:]) ctx.gpu_autocast_kwargs = { "enabled": torch.is_autocast_enabled(), "dtype": torch.get_autocast_gpu_dtype(), "cache_enabled": torch.is_autocast_cache_enabled() } with torch.no_grad(): output_tensors = ctx.run_function(*ctx.input_tensors) return output_tensors @staticmethod def backward(ctx, *output_grads): ctx.input_params = [x.requires_grad_(True) for x in ctx.input_params] ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): # fixes a bug where the first op in run_function modifies the Tensor storage in place, # which is not allowed for detach()'d Tensors shallow_copies = [x.view_as(x) for x in ctx.input_tensors] output_tensors = ctx.run_function(*shallow_copies) input_grads = torch.autograd.grad( output_tensors, ctx.input_tensors + ctx.input_params, output_grads, allow_unused=True ) del ctx.input_tensors del ctx.input_params del output_tensors return (None, None) + input_grads def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): """ Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ if repeat_only: embedding = repeat(timesteps, "b -> b d", d=dim) else: half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=timesteps.device) args = timesteps[:, None].float() * freqs[None] embedding = torch.cat((torch.cos(args), torch.sin(args)), dim=-1) if dim % 2: embedding = torch.cat((embedding, torch.zeros_like(embedding[:, :1])), dim=-1) return embedding def zero_module(module): """Zero out the parameters of a module and return it.""" for p in module.parameters(): p.detach().zero_() return module def scale_module(module, scale): """Scale the parameters of a module and return it.""" for p in module.parameters(): p.detach().mul_(scale) return module def mean_flat(tensor): """Take the mean over all non-batch dimensions.""" return tensor.mean(dim=list(range(1, len(tensor.shape)))) def normalization(channels): """ Make a standard normalization layer. :param channels: number of input channels. :return: nn.Module for normalization. """ return GroupNorm32(32, channels) # PyTorch 1.7 has SiLU, but we support PyTorch 1.5 class SiLU(nn.Module): def forward(self, x): return x * torch.sigmoid(x) class GroupNorm32(nn.GroupNorm): def forward(self, x): return super().forward(x.float()).type(x.dtype) class CausalConv3d(nn.Conv3d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, **kwargs): super().__init__(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=0) # make causal padding assert isinstance(kernel_size, Iterable) and len(kernel_size) == 3 and kernel_size[-1] == kernel_size[-2] temporal_padding = [kernel_size[0] - 1, 0] # causal padding on temporal dimension spatial_padding = [kernel_size[-1] // 2] * 4 # keep padding on spatial dimension causal_padding = tuple(spatial_padding + temporal_padding) # starting from the last dimension self.causal_padding = causal_padding def forward(self, x): x = F.pad(x, self.causal_padding) x = super().forward(x) return x def conv_nd(dims, *args, causal=False, **kwargs): """Create a 1D, 2D, or 3D convolution module.""" if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: if causal: return CausalConv3d(*args, **kwargs) else: return nn.Conv3d(*args, **kwargs) else: raise ValueError(f"Unsupported dimensions: {dims}") def linear(*args, **kwargs): """Create a linear module.""" return nn.Linear(*args, **kwargs) def avg_pool_nd(dims, *args, **kwargs): """Create a 1D, 2D, or 3D average pooling module.""" if dims == 1: return nn.AvgPool1d(*args, **kwargs) elif dims == 2: return nn.AvgPool2d(*args, **kwargs) elif dims == 3: return nn.AvgPool3d(*args, **kwargs) else: raise ValueError(f"Unsupported dimensions: {dims}") class AlphaBlender(nn.Module): strategies = ["learned", "fixed", "learned_with_images"] def __init__( self, alpha: float, merge_strategy: str, rearrange_pattern: str ): super().__init__() self.merge_strategy = merge_strategy self.rearrange_pattern = rearrange_pattern assert merge_strategy in self.strategies, f"merge_strategy needs to be in {self.strategies}" if self.merge_strategy == "fixed": self.register_buffer("mix_factor", torch.Tensor([alpha])) elif self.merge_strategy == "learned" or self.merge_strategy == "learned_with_images": self.register_parameter("mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))) else: raise ValueError(f"Unknown merge strategy {self.merge_strategy}") def get_alpha(self) -> torch.Tensor: if self.merge_strategy == "fixed": alpha = self.mix_factor elif self.merge_strategy == "learned": alpha = torch.sigmoid(self.mix_factor) elif self.merge_strategy == "learned_with_images": alpha = rearrange(torch.sigmoid(self.mix_factor), "... -> ... 1") alpha = rearrange(alpha, self.rearrange_pattern) else: raise NotImplementedError return alpha def forward( self, x_spatial: torch.Tensor, x_temporal: torch.Tensor ) -> torch.Tensor: alpha = self.get_alpha() x = alpha.to(x_spatial.dtype) * x_spatial + (1.0 - alpha).to(x_spatial.dtype) * x_temporal return x