from __future__ import annotations import torch from scipy import integrate from ...util import append_dims def apply_cfg_with_rescale(pos, neg, scale, rescale=0.7): # apply regular classifier-free guidance cfg = neg + scale * (pos - neg) # calculate standard deviations std_pos = pos.std([1, 2, 3], keepdim=True) std_cfg = cfg.std([1, 2, 3], keepdim=True) # apply guidance rescale with fused operations factor = std_pos / std_cfg factor = rescale * factor + (1.0 - rescale) return cfg * factor def linear_multistep_coeff(order, t, i, j, epsrel=1e-4): if order - 1 > i: raise ValueError(f"Order {order} too high for step {i}") def fn(tau): prod = 1.0 for k in range(order): if j == k: continue prod *= (tau - t[i - k]) / (t[i - j] - t[i - k]) return prod return integrate.quad(fn, t[i], t[i + 1], epsrel=epsrel)[0] def get_ancestral_step(sigma_from, sigma_to, eta=1.0): if not eta: return sigma_to, 0.0 else: sigma_up = torch.minimum( sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5 ) sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5 return sigma_down, sigma_up def to_d(x, sigma, denoised): return (x - denoised) / append_dims(sigma, x.ndim) def to_neg_log_sigma(sigma): return sigma.log().neg() def to_sigma(neg_log_sigma): return neg_log_sigma.neg().exp()