File size: 273 Bytes
e8e247e
081b46f
b934ee9
6f1af31
b934ee9
6f1af31
b934ee9
 
8fc7661
b934ee9
 
 
 
 
182a838
b934ee9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import gradio as gr

from transformers import pipeline

pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")

def predict(text):
  return pipe(text)[0]["translation_text"]

demo = gr.Interface(
  fn=predict,
  inputs='text',
  outputs='text',
)

demo.launch()