LingEval / app.py
research14's picture
commented out lftk function
469b565
raw
history blame
18.5 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import lftk
import spacy
import time
import os
import openai
# Load the Vicuna 7B model and tokenizer
vicuna_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3")
vicuna_model = AutoModelForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3")
# Load the LLaMA 7b model and tokenizer
llama_tokenizer = AutoTokenizer.from_pretrained("daryl149/llama-2-7b-chat-hf")
llama_model = AutoModelForCausalLM.from_pretrained("daryl149/llama-2-7b-chat-hf")
template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"'''
# def linguistic_features(message):
# # Load a trained spaCy pipeline
# nlp = spacy.load("en_core_web_sm")
# # Create a spaCy doc object
# doc = nlp(message)
# # Initiate LFTK extractor by passing in the doc
# LFTK_extractor = lftk.Extractor(docs=doc)
# # Customize LFTK extractor (optional)
# LFTK_extractor.customize(stop_words=True, punctuations=False, round_decimal=3)
# # Use LFTK to dynamically extract handcrafted linguistic features
# features_to_extract = lftk.search_features(family="wordsent", language="general", return_format="list_key")
# extracted_features = LFTK_extractor.extract(features=features_to_extract)
# print('Linguistic Features:', extracted_features)
# return extracted_features
def update_api_key(new_key):
global api_key
os.environ['OPENAI_API_TOKEN'] = new_key
openai.api_key = os.environ['OPENAI_API_TOKEN']
def chat(system_prompt, user_prompt, model = 'gpt-3.5-turbo', temperature = 0, verbose = False):
''' Normal call of OpenAI API '''
response = openai.ChatCompletion.create(
temperature = temperature,
model=model,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
])
res = response['choices'][0]['message']['content']
if verbose:
print('System prompt:', system_prompt)
print('User prompt:', user_prompt)
print('GPT response:', res)
return res
def format_chat_prompt(message, chat_history, max_convo_length):
prompt = ""
for turn in chat_history[-max_convo_length:]:
user_message, bot_message = turn
prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}"
prompt = f"{prompt}\nUser: {message}\nAssistant:"
return prompt
def gpt_respond(tab_name, message, chat_history, max_convo_length = 10):
formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
print('Prompt + Context:')
print(formatted_prompt)
bot_message = chat(system_prompt = f'''Generate the output only for the assistant. Please output any <{tab_name}> in the following sentence one per line without any additional text.''',
user_prompt = formatted_prompt)
chat_history.append((message, bot_message))
return "", chat_history
def vicuna_respond(tab_name, message, chat_history):
formatted_prompt = f'''Generate the output only for the assistant. Please output any {tab_name} in the following sentence one per line without any additional text: {message}'''
print('Vicuna Ling Ents Fn - Prompt + Context:')
print(formatted_prompt)
input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(bot_message)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
print(bot_message)
chat_history.append((formatted_prompt, bot_message))
time.sleep(2)
return tab_name, "", chat_history
def llama_respond(tab_name, message, chat_history):
formatted_prompt = f'''Generate the output only for the assistant. Please output any {tab_name} in the following sentence one per line without any additional text: {message}'''
# print('Llama - Prompt + Context:')
# print(formatted_prompt)
input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
# print(bot_message)
chat_history.append((formatted_prompt, bot_message))
time.sleep(2)
return tab_name, "", chat_history
def gpt_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history, max_convo_length = 10):
formatted_system_prompt = ""
if (task_name == "POS Tagging"):
if (strategy == "S1"):
formatted_system_prompt = f'''Generate the output only for the assistant. Please output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
elif (strategy == "S2"):
formatted_system_prompt = f'''Please POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
elif (strategy == "S3"):
formatted_system_prompt = f'''Please POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
elif (task_name == "Chunking"):
if (strategy == "S1"):
formatted_system_prompt = f'''Generate the output only for the assistant. Please output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
elif (strategy == "S2"):
formatted_system_prompt = f'''Please chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
elif (strategy == "S3"):
formatted_system_prompt = f'''Please chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
print('Prompt + Context:')
print(formatted_prompt)
bot_message = chat(system_prompt = formatted_system_prompt,
user_prompt = formatted_prompt)
chat_history.append((message, bot_message))
return "", chat_history
def vicuna_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
formatted_prompt = ""
if (task_name == "POS Tagging"):
if (strategy == "S1"):
formatted_prompt = f'''Generate the output only for the assistant. Please output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
elif (strategy == "S2"):
formatted_prompt = f'''Please POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
elif (strategy == "S3"):
formatted_prompt = f'''Please POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
elif (task_name == "Chunking"):
if (strategy == "S1"):
formatted_prompt = f'''Generate the output only for the assistant. Please output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
elif (strategy == "S2"):
formatted_prompt = f'''Please chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
elif (strategy == "S3"):
formatted_prompt = f'''Please chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
print('Vicuna Strategy Fn - Prompt + Context:')
print(formatted_prompt)
input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(bot_message)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
print(bot_message)
chat_history.append((formatted_prompt, bot_message))
time.sleep(2)
return task_name, "", chat_history
def llama_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
formatted_prompt = ""
if (task_name == "POS Tagging"):
if (strategy == "S1"):
formatted_prompt = f'''Generate the output only for the assistant. Please output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
elif (strategy == "S2"):
formatted_prompt = f'''Please POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
elif (strategy == "S3"):
formatted_prompt = f'''Please POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
elif (task_name == "Chunking"):
if (strategy == "S1"):
formatted_prompt = f'''Generate the output only for the assistant. Please output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
elif (strategy == "S2"):
formatted_prompt = f'''Please chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
elif (strategy == "S3"):
formatted_prompt = f'''Please chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
# print('Llama Strategies - Prompt + Context:')
# print(formatted_prompt)
input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
# print(bot_message)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
# print(bot_message)
chat_history.append((formatted_prompt, bot_message))
time.sleep(2)
return task_name, "", chat_history
def interface():
# prompt = template_single.format(tab_name, textbox_prompt)
with gr.Tab("Linguistic Entities"):
gr.Markdown(" Description Here ")
# Inputs
ling_ents_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
with gr.Row():
# Will activate after getting API key
ling_ents_apikey_input = gr.Textbox(label="Open AI Key", placeholder="Enter your Openai key here", type="password")
ling_ents_apikey_btn = gr.Button(value="Submit Key", scale=0)
linguistic_entities = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity")
ling_ents_btn = gr.Button(value="Submit")
# Outputs
gr.Markdown("Strategy 1 QA-Based Prompting")
linguistic_features_textbox = gr.Textbox(label="Linguistic Features", disabled=True)
with gr.Row():
vicuna_ling_ents_chatbot = gr.Chatbot(label="vicuna-7b")
llama_ling_ents_chatbot = gr.Chatbot(label="llama-7b")
gpt_ling_ents_chatbot = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton(components=[ling_ents_prompt, ling_ents_apikey_input, vicuna_ling_ents_chatbot, llama_ling_ents_chatbot, gpt_ling_ents_chatbot])
# Event Handler for Vicuna Chatbot
ling_ents_btn.click(vicuna_respond, inputs=[linguistic_entities, ling_ents_prompt, vicuna_ling_ents_chatbot],
outputs=[linguistic_entities, ling_ents_prompt, vicuna_ling_ents_chatbot])
# Event Handler for LLaMA Chatbot
ling_ents_btn.click(llama_respond, inputs=[linguistic_entities, ling_ents_prompt, llama_ling_ents_chatbot],
outputs=[linguistic_entities, ling_ents_prompt, llama_ling_ents_chatbot])
# Event Handler for GPT 3.5 Chatbot, user must submit api key before submitting the prompt
# Will activate after getting API key
# ling_ents_apikey_btn.click(update_api_key, inputs=ling_ents_apikey_input)
# ling_ents_btn.click(gpt_respond, inputs=[linguistic_entities, ling_ents_prompt, gpt_ling_ents_chatbot],
# outputs=[linguistic_entities, ling_ents_prompt, gpt_ling_ents_chatbot])
with gr.Tab("POS/Chunking"):
gr.Markdown(" Description Here ")
# Inputs
task_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
with gr.Row():
task_apikey_input = gr.Textbox(label="Open AI Key", placeholder="Enter your Openai key here", type="password")
task_apikey_btn = gr.Button(value="Submit Key", scale=0)
task = gr.Dropdown(["POS Tagging", "Chunking"], label="Task")
task_linguistic_entities = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity For Strategy 1")
task_btn = gr.Button(value="Submit")
# Outputs
gr.Markdown("Strategy 1 QA-Based Prompting")
strategy1 = gr.Markdown("S1", visible=False)
with gr.Row():
vicuna_S1_chatbot = gr.Chatbot(label="vicuna-7b")
llama_S1_chatbot = gr.Chatbot(label="llama-7b")
gpt_S1_chatbot = gr.Chatbot(label="gpt-3.5")
gr.Markdown("Strategy 2 Instruction-Based Prompting")
strategy2 = gr.Markdown("S2", visible=False)
with gr.Row():
vicuna_S2_chatbot = gr.Chatbot(label="vicuna-7b")
llama_S2_chatbot = gr.Chatbot(label="llama-7b")
gpt_S2_chatbot = gr.Chatbot(label="gpt-3.5")
gr.Markdown("Strategy 3 Structured Prompting")
strategy3 = gr.Markdown("S3", visible=False)
with gr.Row():
vicuna_S3_chatbot = gr.Chatbot(label="vicuna-7b")
llama_S3_chatbot = gr.Chatbot(label="llama-7b")
gpt_S3_chatbot = gr.Chatbot(label="gpt-3.5")
clear_all = gr.ClearButton(components=[task_prompt, task_apikey_input,
vicuna_S1_chatbot, llama_S1_chatbot, gpt_S1_chatbot,
vicuna_S2_chatbot, llama_S2_chatbot, gpt_S2_chatbot,
vicuna_S3_chatbot, llama_S3_chatbot, gpt_S3_chatbot])
# vicuna_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
# Event Handlers for Vicuna Chatbot POS/Chunk
task_btn.click(vicuna_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, vicuna_S1_chatbot],
outputs=[task, task_prompt, vicuna_S1_chatbot])
task_btn.click(vicuna_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, vicuna_S2_chatbot],
outputs=[task, task_prompt, vicuna_S2_chatbot])
task_btn.click(vicuna_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, vicuna_S3_chatbot],
outputs=[task, task_prompt, vicuna_S3_chatbot])
# Event Handler for LLaMA Chatbot POS/Chunk
task_btn.click(llama_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, llama_S1_chatbot],
outputs=[task, task_prompt, llama_S1_chatbot])
task_btn.click(llama_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, llama_S2_chatbot],
outputs=[task, task_prompt, llama_S2_chatbot])
task_btn.click(llama_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, llama_S3_chatbot],
outputs=[task, task_prompt, llama_S3_chatbot])
# Event Handler for GPT 3.5 Chatbot POS/Chunk, user must submit api key before submitting the prompt
# Will activate after getting API key
# task_apikey_btn.click(update_api_key, inputs=ling_ents_apikey_input)
# task_btn.click(gpt_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, gpt_S1_chatbot],
# outputs=[task, task_prompt, gpt_S1_chatbot])
# task_btn.click(gpt_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, gpt_S2_chatbot],
# outputs=[task, task_prompt, gpt_S2_chatbot])
# task_btn.click(gpt_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, gpt_S3_chatbot],
# outputs=[task, task_prompt, gpt_S3_chatbot])
# textbox_prompt.submit(vicuna_respond, inputs=[textbox_prompt, vicuna_S1_chatbot], outputs=[textbox_prompt, vicuna_S1_chatbot])
# textbox_prompt.submit(respond, inputs=[textbox_prompt, vicuna_S2_chatbot], outputs=[textbox_prompt, vicuna_S2_chatbot])
# textbox_prompt.submit(respond, inputs=[textbox_prompt, vicuna_S3_chatbot], outputs=[textbox_prompt, vicuna_S3_chatbot])
#textbox_prompt.submit(llama_respond, inputs=[textbox_prompt, llama_S1_chatbot], outputs=[textbox_prompt, llama_S1_chatbot])
# btn.click(lambda _,
# message=textbox_prompt: linguistic_features_textbox.update(linguistic_features(textbox_prompt.value)),
# inputs=[textbox_prompt],
# outputs=[linguistic_features_textbox])
with gr.Blocks() as demo:
gr.Markdown("# LLM Evaluator With Linguistic Scrutiny")
# load interface
interface()
demo.launch()