LingEval / app.py
research14's picture
test
6204d1b
raw
history blame
6.54 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import os
import openai
# Load the Vicuna 7B v1.3 LMSys model and tokenizer
model_name = "lmsys/vicuna-7b-v1.3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"'''
def update_api_key(new_key):
global api_key
os.environ['OPENAI_API_TOKEN'] = new_key
openai.api_key = os.environ['OPENAI_API_TOKEN']
def chat(system_prompt, user_prompt, model = 'gpt-3.5-turbo', temperature = 0, verbose = False):
''' Normal call of OpenAI API '''
response = openai.ChatCompletion.create(
temperature = temperature,
model=model,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
])
res = response['choices'][0]['message']['content']
if verbose:
print('System prompt:', system_prompt)
print('User prompt:', user_prompt)
print('GPT response:', res)
return res
def format_chat_prompt(message, chat_history, max_convo_length):
prompt = ""
for turn in chat_history[-max_convo_length:]:
user_message, bot_message = turn
prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}"
prompt = f"{prompt}\nUser: {message}\nAssistant:"
return prompt
def respond_gpt(tab_name, message, chat_history, max_convo_length = 10):
formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
print('Prompt + Context:')
print(formatted_prompt)
bot_message = chat(system_prompt = f'''Generate the output only for the assistant. Please output any <{tab_name}> in the following sentence one per line without any additional text.''',
user_prompt = formatted_prompt)
chat_history.append((message, bot_message))
return "", chat_history
def respond(message, chat_history):
input_ids = tokenizer.encode(message, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2)
bot_message = tokenizer.decode(output_ids[0], skip_special_tokens=True)
chat_history.append((message, bot_message))
time.sleep(2)
return "", chat_history
def interface():
gr.Markdown(" Description ")
textbox_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
with gr.Row():
api_key_input = gr.Textbox(label="Open AI Key", placeholder="Enter your Openai key here", type="password")
api_key_btn = gr.Button(label="Submit Api Key", scale=0)
tab_name = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity")
btn = gr.Button(label="Submit")
# prompt = template_single.format(tab_name, textbox_prompt)
gr.Markdown("Strategy 1 QA-Based Prompting")
with gr.Row():
vicuna_S1_chatbot = gr.Chatbot(label="vicuna-7b")
llama_S1_chatbot = gr.Chatbot(label="llama-7b")
gpt_S1_chatbot = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton(components=[textbox_prompt, vicuna_S1_chatbot])
gr.Markdown("Strategy 2 Instruction-Based Prompting")
with gr.Row():
vicuna_S2_chatbot = gr.Chatbot(label="vicuna-7b")
llama_S2_chatbot = gr.Chatbot(label="llama-7b")
gpt_S2_chatbot = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton(components=[textbox_prompt, vicuna_S2_chatbot])
gr.Markdown("Strategy 3 Structured Prompting")
with gr.Row():
vicuna_S3_chatbot = gr.Chatbot(label="vicuna-7b")
llama_S3_chatbot = gr.Chatbot(label="llama-7b")
gpt_S3_chatbot = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton(components=[textbox_prompt, vicuna_S3_chatbot])
textbox_prompt.submit(respond, inputs=[textbox_prompt, vicuna_S1_chatbot], outputs=[textbox_prompt, vicuna_S1_chatbot])
textbox_prompt.submit(respond, inputs=[textbox_prompt, vicuna_S2_chatbot], outputs=[textbox_prompt, vicuna_S2_chatbot])
textbox_prompt.submit(respond, inputs=[textbox_prompt, vicuna_S3_chatbot], outputs=[textbox_prompt, vicuna_S3_chatbot])
api_key_btn.click(update_api_key, inputs=api_key_input)
btn.click(respond_gpt, inputs=[tab_name, textbox_prompt, gpt_S1_chatbot], outputs=[tab_name, textbox_prompt, gpt_S1_chatbot])
with gr.Blocks() as demo:
gr.Markdown("# LLM Evaluator With Linguistic Scrutiny")
with gr.Tab("Noun"):
interface()
with gr.Tab("Determiner"):
gr.Markdown(" Description ")
prompt_CHUNK = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
gr.Markdown("Strategy 1 QA")
with gr.Row():
vicuna_S1_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b")
llama_S1_chatbot_CHUNK = gr.Chatbot(label="llama-7b")
gpt_S1_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton([prompt_CHUNK, vicuna_S1_chatbot_CHUNK])
gr.Markdown("Strategy 2 Instruction")
with gr.Row():
vicuna_S2_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b")
llama_S2_chatbot_CHUNK = gr.Chatbot(label="llama-7b")
gpt_S2_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton([prompt_CHUNK, vicuna_S2_chatbot_CHUNK])
gr.Markdown("Strategy 3 Structured Prompting")
with gr.Row():
vicuna_S3_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b")
llama_S3_chatbot_CHUNK = gr.Chatbot(label="llama-7b")
gpt_S3_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton([prompt_CHUNK, vicuna_S3_chatbot_CHUNK])
with gr.Tab("Noun phrase"):
interface()
with gr.Tab("Verb phrase"):
interface()
with gr.Tab("Dependent clause"):
interface()
with gr.Tab("T-units"):
interface()
prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S1_chatbot_CHUNK], [prompt_CHUNK, vicuna_S1_chatbot_CHUNK])
prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S2_chatbot_CHUNK], [prompt_CHUNK, vicuna_S2_chatbot_CHUNK])
prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S3_chatbot_CHUNK], [prompt_CHUNK, vicuna_S3_chatbot_CHUNK])
demo.launch()