Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import time | |
# Load the Vicuna 7B v1.3 LMSys model and tokenizer | |
model_name = "lmsys/vicuna-7b-v1.3" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
template_single = '''Output any <{}> in the following sentence one per line: "{}"''' | |
linguistic_entities = [ | |
"Noun", | |
"Determiner", | |
"Noun phrase", | |
"Verb phrase", | |
"Dependent Clause", | |
"T-units" | |
] | |
with gr.Blocks() as demo: | |
gr.Markdown("# LLM Evaluator With Linguistic Scrutiny") | |
gr.Markdown(" Description ") | |
# Dropdown for linguistic entities | |
entity_dropdown = gr.Dropdown(linguistic_entities, label="Select Linguistic Entity") | |
prompt_POS = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter") | |
submit_btn = gr.Button(label="Submit") | |
gr.Markdown("Strategy 1 QA-Based Prompting") | |
with gr.Row(): | |
vicuna_S1_chatbot_POS = gr.Chatbot(label="vicuna-7b") | |
llama_S1_chatbot_POS = gr.Chatbot(label="llama-7b") | |
gpt_S1_chatbot_POS = gr.Chatbot(label="gpt-3.5") | |
clear = gr.ClearButton([prompt_POS, vicuna_S1_chatbot_POS]) | |
gr.Markdown("Strategy 2 Instruction-Based Prompting") | |
with gr.Row(): | |
vicuna_S2_chatbot_POS = gr.Chatbot(label="vicuna-7b") | |
llama_S2_chatbot_POS = gr.Chatbot(label="llama-7b") | |
gpt_S2_chatbot_POS = gr.Chatbot(label="gpt-3.5") | |
clear = gr.ClearButton([prompt_POS, vicuna_S2_chatbot_POS]) | |
gr.Markdown("Strategy 3 Structured Prompting") | |
with gr.Row(): | |
vicuna_S3_chatbot_POS = gr.Chatbot(label="vicuna-7b") | |
llama_S3_chatbot_POS = gr.Chatbot(label="llama-7b") | |
gpt_S3_chatbot_POS = gr.Chatbot(label="gpt-3.5") | |
clear = gr.ClearButton([prompt_POS, vicuna_S3_chatbot_POS]) | |
# gr.Markdown(" Description ") | |
# prompt_CHUNK = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter") | |
# gr.Markdown("Strategy 1 QA") | |
# with gr.Row(): | |
# vicuna_S1_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b") | |
# llama_S1_chatbot_CHUNK = gr.Chatbot(label="llama-7b") | |
# gpt_S1_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5") | |
# clear = gr.ClearButton([prompt_CHUNK, vicuna_S1_chatbot_CHUNK]) | |
# gr.Markdown("Strategy 2 Instruction") | |
# with gr.Row(): | |
# vicuna_S2_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b") | |
# llama_S2_chatbot_CHUNK = gr.Chatbot(label="llama-7b") | |
# gpt_S2_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5") | |
# clear = gr.ClearButton([prompt_CHUNK, vicuna_S2_chatbot_CHUNK]) | |
# gr.Markdown("Strategy 3 Structured Prompting") | |
# with gr.Row(): | |
# vicuna_S3_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b") | |
# llama_S3_chatbot_CHUNK = gr.Chatbot(label="llama-7b") | |
# gpt_S3_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5") | |
# clear = gr.ClearButton([prompt_CHUNK, vicuna_S3_chatbot_CHUNK]) | |
# def respond(message, chat_history): | |
# input_ids = tokenizer.encode(message, return_tensors="pt") | |
# output_ids = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2) | |
# bot_message = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
# chat_history.append((message, bot_message)) | |
# time.sleep(2) | |
# return "", chat_history | |
def respond_entities(entity, message, chat_history): | |
prompt = template_single.format(entity, message) | |
input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
output_ids = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2) | |
bot_message = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
chat_history.append((message, bot_message)) | |
time.sleep(2) | |
return entity, message, bot_message | |
submit_btn.click(respond_entities, [entity_dropdown, prompt_POS, vicuna_S1_chatbot_POS], [entity_dropdown, prompt_POS, vicuna_S1_chatbot_POS]) | |
submit_btn.click(respond_entities, [entity_dropdown, prompt_POS, vicuna_S2_chatbot_POS], [entity_dropdown, prompt_POS, vicuna_S2_chatbot_POS]) | |
submit_btn.click(respond_entities, [entity_dropdown, prompt_POS, vicuna_S3_chatbot_POS], [entity_dropdown, prompt_POS, vicuna_S3_chatbot_POS]) | |
# prompt_CHUNK.submit(respond_entities, [prompt_CHUNK, vicuna_S1_chatbot_CHUNK], [prompt_CHUNK, vicuna_S1_chatbot_CHUNK]) | |
# prompt_CHUNK.submit(respond_entities, [prompt_CHUNK, vicuna_S2_chatbot_CHUNK], [prompt_CHUNK, vicuna_S2_chatbot_CHUNK]) | |
# prompt_CHUNK.submit(respond_entities, [prompt_CHUNK, vicuna_S3_chatbot_CHUNK], [prompt_CHUNK, vicuna_S3_chatbot_CHUNK]) | |
demo.launch() | |