LingEval / app.py
research14's picture
test interface
74d11d9
raw
history blame
935 Bytes
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load pre-trained GPT-3.5 model and tokenizer (you can replace this with your model)
model_name = "EleutherAI/gpt-neo-2.7B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
def generate_text(input_text, max_length=50):
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate(input_ids, max_length=max_length, num_return_sequences=1)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text
# Create a Gradio interface
iface = gr.Interface(
fn=generate_text, # Your text generation function
inputs=gr.Textbox(text="Enter text here..."), # Text input field
outputs=gr.Textbox(), # Display generated text
live=True # Real-time updates
)
# Launch the interface
iface.launch()