Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import time | |
# Load the Vicuna 7B v1.3 LMSys model and tokenizer | |
model_name = "lmsys/vicuna-7b-v1.3" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
with gr.Blocks() as demo: | |
gr.Markdown("# LLM Evaluator With Linguistic Scrutiny") | |
with gr.Tab("POS"): | |
gr.Markdown(" Description ") | |
msg = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter") | |
gr.Markdown("Strategy 1 QA") | |
with gr.Row(): | |
vicuna_S1_chatbot_POS = gr.Chatbot(label="vicuna-7b") | |
clear = gr.ClearButton([msg, vicuna_S1_chatbot_POS]) | |
gr.Markdown("Strategy 2 Instruction") | |
with gr.Row(): | |
vicuna_S2_chatbot_POS = gr.Chatbot(label="vicuna-7b") | |
clear = gr.ClearButton([msg, vicuna_S2_chatbot_POS]) | |
gr.Markdown("Strategy 1 Structured Prompting") | |
with gr.Row(): | |
vicuna_S3_chatbot_POS = gr.Chatbot(label="vicuna-7b") | |
clear = gr.ClearButton([msg, vicuna_S3_chatbot_POS]) | |
def respond(message, chat_history): | |
input_ids = tokenizer.encode(message, return_tensors="pt") | |
output_ids = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2) | |
bot_message = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
chat_history.append((message, bot_message)) | |
time.sleep(2) | |
return "", chat_history | |
msg.submit(respond, [msg, vicuna_S1_chatbot_POS], [msg, vicuna_S1_chatbot_POS]) | |
msg.submit(respond, [msg, vicuna_S2_chatbot_POS], [msg, vicuna_S2_chatbot_POS]) | |
msg.submit(respond, [msg, vicuna_S3_chatbot_POS], [msg, vicuna_S3_chatbot_POS]) | |
demo.launch() | |