research14 commited on
Commit
04fc021
·
1 Parent(s): cc5a0c8
Files changed (1) hide show
  1. app.py +56 -34
app.py CHANGED
@@ -51,6 +51,14 @@ for i, j in zip(ents, ents_prompt):
51
 
52
  model_mapping = {
53
  'gpt3.5': 'gpt2',
 
 
 
 
 
 
 
 
54
  }
55
 
56
  with open('sample_uniform_1k_2.txt', 'r') as f:
@@ -85,50 +93,62 @@ with open('demonstration_3_42_parse.txt', 'r') as f:
85
  # Your existing code
86
  theme = gr.themes.Soft()
87
 
88
- # Pipeline Initialization
89
- pipelines = {model: pipeline(task="text2text-generation", model=model_mapping[model]) for model in model_mapping}
90
-
91
- # Task-specific Prompts
92
- task_prompts = {
93
- 'POS': {
94
- 'strategy1': 'template_all',
95
- 'strategy2': 'prompt2_pos',
96
- 'strategy3': 'demon_pos',
97
- },
98
- 'Chunking': {
99
- 'strategy1': 'template_all',
100
- 'strategy2': 'prompt2_chunk',
101
- 'strategy3': 'demon_chunk',
102
- },
103
- 'Parsing': {
104
- 'strategy1': 'template_all',
105
- 'strategy2': 'prompt2_parse',
106
- 'strategy3': 'demon_parse',
107
- },
108
- }
109
 
110
  # Dropdown options for model and task
111
  model_options = list(model_mapping.keys())
112
  task_options = ['POS', 'Chunking', 'Parsing']
113
 
 
 
114
  # Function to process text based on model and task
115
  def process_text(model_name, task, text):
116
  gid_list = selected_idx[0:20]
117
 
118
  for gid in tqdm(gid_list, desc='Query'):
119
  text = ptb[gid]['text']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
 
121
- if model_name in pipelines:
122
- strategy1 = task_prompts[task]['strategy1'].format(text)
123
- strategy2 = task_prompts[task]['strategy2'].format(text)
124
- strategy3 = task_prompts[task]['strategy3'].format(text)
125
-
126
- # Extract generated text from the model's response
127
- response1 = pipelines[model_name](strategy1)[0]['generated_text']
128
- response2 = pipelines[model_name](strategy2)[0]['generated_text']
129
- response3 = pipelines[model_name](strategy3)[0]['generated_text']
130
-
131
- return response1, response2, response3
132
 
133
  # Gradio interface
134
  iface = gr.Interface(
@@ -143,9 +163,11 @@ iface = gr.Interface(
143
  gr.Textbox(label="Strategy 2 Instruction Result"),
144
  gr.Textbox(label="Strategy 3 Structured Prompting Result"),
145
  ],
146
- title="LLM Evaluator For Linguistic Scrutiny",
147
- theme=theme,
148
  live=False,
149
  )
150
 
151
  iface.launch()
 
 
 
51
 
52
  model_mapping = {
53
  'gpt3.5': 'gpt2',
54
+ #'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
55
+ #'vicuna-13b': 'lmsys/vicuna-13b-v1.3',
56
+ #'vicuna-33b': 'lmsys/vicuna-33b-v1.3',
57
+ #'fastchat-t5': 'lmsys/fastchat-t5-3b-v1.0',
58
+ #'llama-7b': './llama/hf/7B',
59
+ #'llama-13b': './llama/hf/13B',
60
+ #'llama-30b': './llama/hf/30B',
61
+ #'alpaca': './alpaca-7B',
62
  }
63
 
64
  with open('sample_uniform_1k_2.txt', 'r') as f:
 
93
  # Your existing code
94
  theme = gr.themes.Soft()
95
 
96
+
97
+ gpt_pipeline = pipeline(task="text2text-generation", model="gpt2")
98
+ #vicuna7b_pipeline = pipeline(task="text2text-generation", model="lmsys/vicuna-7b-v1.3")
99
+ #vicuna13b_pipeline = pipeline(task="text2text-generation", model="lmsys/vicuna-13b-v1.3")
100
+ #vicuna33b_pipeline = pipeline(task="text2text-generation", model="lmsys/vicuna-33b-v1.3")
101
+ #fastchatT5_pipeline = pipeline(task="text2text-generation", model="lmsys/fastchat-t5-3b-v1.0")
102
+ #llama7b_pipeline = pipeline(task="text2text-generation", model="./llama/hf/7B")
103
+ #llama13b_pipeline = pipeline(task="text2text-generation", model="./llama/hf/13B")
104
+ #llama30b_pipeline = pipeline(task="text2text-generation", model="./llama/hf/30B")
105
+ #alpaca_pipeline = pipeline(task="text2text-generation", model="./alpaca-7B")
 
 
 
 
 
 
 
 
 
 
 
106
 
107
  # Dropdown options for model and task
108
  model_options = list(model_mapping.keys())
109
  task_options = ['POS', 'Chunking', 'Parsing']
110
 
111
+
112
+
113
  # Function to process text based on model and task
114
  def process_text(model_name, task, text):
115
  gid_list = selected_idx[0:20]
116
 
117
  for gid in tqdm(gid_list, desc='Query'):
118
  text = ptb[gid]['text']
119
+
120
+ if model_name is 'gpt3.5':
121
+ if task == 'POS':
122
+ strategy1 = template_all.format(text)
123
+ strategy2 = prompt2_pos.format(text)
124
+ strategy3 = demon_pos
125
+ return (gpt_pipeline(strategy1), gpt_pipeline(strategy2), gpt_pipeline(strategy3))
126
+ elif task == 'Chunking':
127
+ strategy1 = template_all.format(text)
128
+ strategy2 = prompt2_chunk.format(text)
129
+ strategy3 = demon_chunk
130
+ return (gpt_pipeline(strategy1), gpt_pipeline(strategy2), gpt_pipeline(strategy3))
131
+ elif task == 'Parsing':
132
+ strategy1 = template_all.format(text)
133
+ strategy2 = prompt2_parse.format(text)
134
+ strategy3 = demon_parse
135
+ return (gpt_pipeline(strategy1), gpt_pipeline(strategy2), gpt_pipeline(strategy3))
136
+
137
+ # Define prompts for each strategy based on the task
138
+ #strategy_prompts = {
139
+ # 'Strategy 1': template_all.format(text),
140
+ # 'Strategy 2': {
141
+ # 'POS': prompt2_pos.format(text),
142
+ # 'Chunking': prompt2_chunk.format(text),
143
+ # 'Parsing': prompt2_parse.format(text),
144
+ # }.get(task, "Invalid Task Selection for Strategy 2"),
145
+ # 'Strategy 3': {
146
+ # 'POS': demon_pos,
147
+ # 'Chunking': demon_chunk,
148
+ # 'Parsing': demon_parse,
149
+ # }.get(task, "Invalid Task Selection for Strategy 3"),
150
+ #}
151
 
 
 
 
 
 
 
 
 
 
 
 
152
 
153
  # Gradio interface
154
  iface = gr.Interface(
 
163
  gr.Textbox(label="Strategy 2 Instruction Result"),
164
  gr.Textbox(label="Strategy 3 Structured Prompting Result"),
165
  ],
166
+ title = "LLM Evaluator For Linguistic Scrutiny",
167
+ theme = theme,
168
  live=False,
169
  )
170
 
171
  iface.launch()
172
+
173
+