research14 commited on
Commit
7d35e7d
·
1 Parent(s): 956b24f

revert changes

Browse files
Files changed (1) hide show
  1. app.py +51 -68
app.py CHANGED
@@ -1,75 +1,58 @@
1
  import gradio as gr
2
- from transformers import pipeline
3
 
4
- # Initialize a dictionary of models for each strategy
5
- models = {
6
- "GPT-2": "gpt2",
7
- "ChatGPT": "EleutherAI/gpt-neo-1.3",
8
- "LLaMa": "model_for_LLaMa",
9
- "Vicuna": "model_for_Vicuna",
10
- "Alpaca": "model_for_Alpaca",
11
- "Flan-T5": "model_for_Flan-T5",
12
- }
13
 
14
- # Define a function to generate text based on the selected model
15
- def generate_text(input_instruction, selected_model):
16
- if selected_model in models:
17
- model_name = models[selected_model]
18
- pipe = pipeline("text-generation", model=model_name)
19
- generated_text = pipe(input_instruction, max_length=100, do_sample=True)[0]['generated_text']
20
- return generated_text
21
- else:
22
- return "Please select a model for this strategy."
23
-
24
- # Define example instructions for testing
25
- instruction_examples = [
26
- ("Write a short story about a cat."),
27
- ("Explain the concept of artificial intelligence."),
28
- ("Compose a poem about nature."),
29
  ]
30
 
31
- # Create a Gradio interface
32
- iface = gr.Interface(
33
- fn=generate_text,
34
- inputs=gr.Textbox(placeholder="Enter instruction here..."),
 
 
 
35
  outputs=gr.Textbox(),
36
- examples=instruction_examples,
37
  live=True,
38
- title="Text Generation with Dynamic Model Selection",
39
- )
40
-
41
- # Additional input section 1 - User input
42
- with gr.Row():
43
- user_input = gr.Textbox(placeholder="Enter your input...")
44
-
45
- # Additional input section 2 - Strategy 1
46
- with gr.Row():
47
- strategy1_selector = gr.Dropdown(list(models.keys()), label="Strategy 1 - QA-Based Prompting")
48
-
49
- # Additional input section 3 - Strategy 2
50
- with gr.Row():
51
- strategy2_selector = gr.Dropdown(list(models.keys()), label="Strategy 2 - Instruction-Based Prompting")
52
-
53
- # Additional input section 4 - Strategy 3
54
- with gr.Row():
55
- strategy3_selector = gr.Dropdown(list(models.keys()), label="Strategy 3 - Structured Prompting")
56
-
57
- # Create a callback function for dynamic model selection
58
- def update_model_and_generate_text(input_instruction, selected_model):
59
- if selected_model:
60
- selected_model_name = strategy1_selector.value if selected_model == "Strategy 1 - QA-Based Prompting" else (
61
- strategy2_selector.value if selected_model == "Strategy 2 - Instruction-Based Prompting" else
62
- strategy3_selector.value)
63
- iface.set_function(generate_text, inputs=[user_input, selected_model], outputs="outputs")
64
- return "Selected model: " + selected_model_name
65
-
66
- # Add a submit button to trigger dynamic model selection
67
- submit_button = gr.Button("Submit")
68
-
69
- # Set the function for the Gradio interface to the update_model_and_generate_text function
70
- iface.fn = update_model_and_generate_text
71
-
72
- # Add the submit button to the interface
73
- iface.add(submit_button)
74
-
75
- iface.launch()
 
1
  import gradio as gr
 
2
 
3
+ theme = gr.themes.Soft()
 
 
 
 
 
 
 
 
4
 
5
+ query_examples=[
6
+ ("Default Option 1"),
7
+ ("Default Option 2"),
8
+ ("Default Option 3")
 
 
 
 
 
 
 
 
 
 
 
9
  ]
10
 
11
+ # Define a function that echoes the input text
12
+ def echo_text(input_text):
13
+ return input_text
14
+
15
+ with gr.Interface(
16
+ fn=echo_text,
17
+ inputs=gr.Textbox(placeholder="Enter text here..."),
18
  outputs=gr.Textbox(),
19
+ examples=query_examples,
20
  live=True,
21
+ title="LLM Evaluator with Linguistic Scrutiny",
22
+ theme=theme
23
+ ) as iface:
24
+ blocks = gr.Blocks()
25
+
26
+ with gr.Row():
27
+ vicuna_model_selector = gr.Dropdown(["7b", "13b", "33b"], label="Vicuna Model", placeholder="Select model size")
28
+ llama_model_selector = gr.Dropdown(["7B", "13B", "30B", "65B"], label="LLaMa Model", placeholder="Select model size")
29
+ chatgpt_api_key = gr.Textbox(label="ChatGPT API Key", type="password", placeholder="Enter your API key")
30
+
31
+ # Strategy 1 - QA-Based Prompting
32
+ with gr.Accordion("Strategy 1 - QA-Based Prompting", style="font-weight: bold; font-size: 16px;"):
33
+ with gr.Row():
34
+ chatgpt_btn = gr.Button("ChatGPT")
35
+ llama_btn = gr.Button("LLaMA")
36
+ vicuna_btn = gr.Button("Vicuna")
37
+ alpaca_btn = gr.Button("Alpaca")
38
+ flant5_btn = gr.Button("Flan-T5")
39
+
40
+ # Strategy 2 - Instruction-Based Prompting
41
+ with gr.Accordion("Strategy 2 - Instruction-Based Prompting", style="font-weight: bold; font-size: 16px;"):
42
+ with gr.Row():
43
+ chatgpt_btn = gr.Button("ChatGPT")
44
+ llama_btn = gr.Button("LLaMA")
45
+ vicuna_btn = gr.Button("Vicuna")
46
+ alpaca_btn = gr.Button("Alpaca")
47
+ flant5_btn = gr.Button("Flan-T5")
48
+
49
+ # Strategy 3 - Structured Prompting
50
+ with gr.Accordion("Strategy 3 - Structured Prompting", style="font-weight: bold; font-size: 16px;"):
51
+ with gr.Row():
52
+ chatgpt_btn = gr.Button("ChatGPT")
53
+ llama_btn = gr.Button("LLaMA")
54
+ vicuna_btn = gr.Button("Vicuna")
55
+ alpaca_btn = gr.Button("Alpaca")
56
+ flant5_btn = gr.Button("Flan-T5")
57
+
58
+ iface.launch()