Spaces:
Runtime error
Runtime error
Commit
·
b308128
1
Parent(s):
c0ac2c5
changes
Browse files- app.py +133 -29
- run_llm.py +80 -11
app.py
CHANGED
|
@@ -1,52 +1,152 @@
|
|
| 1 |
-
import
|
|
|
|
| 2 |
import json
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from tqdm import tqdm
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
with open('sample_uniform_1k_2.txt', 'r') as f:
|
| 10 |
selected_idx = f.readlines()
|
| 11 |
selected_idx = [int(i.strip()) for i in selected_idx]#[s:e]
|
| 12 |
|
| 13 |
-
gid_list = selected_idx[0]
|
| 14 |
-
|
| 15 |
ptb = []
|
| 16 |
with open('ptb.jsonl', 'r') as f:
|
| 17 |
for l in f:
|
| 18 |
ptb.append(json.loads(l))
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
# Function to process text based on model and task
|
| 21 |
def process_text(model_name, task, text):
|
|
|
|
|
|
|
| 22 |
for gid in tqdm(gid_list, desc='Query'):
|
| 23 |
text = ptb[gid]['text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
# Define prompts for each strategy based on the task
|
| 26 |
-
strategy_prompts = {
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
}
|
| 39 |
-
|
| 40 |
-
# Get the selected prompt based on the strategy
|
| 41 |
-
prompt = strategy_prompts.get(model_name, "Invalid Model Selection")
|
| 42 |
-
|
| 43 |
-
# Add your logic to feed the prompt to the selected model and get the result
|
| 44 |
-
result = "Processed Result" # Replace this with your actual result
|
| 45 |
-
return result
|
| 46 |
|
| 47 |
-
# Dropdown options for model and task
|
| 48 |
-
model_options = list(model_mapping.keys())
|
| 49 |
-
task_options = ['POS', 'Chunking', 'Parsing']
|
| 50 |
|
| 51 |
# Gradio interface
|
| 52 |
iface = gr.Interface(
|
|
@@ -54,14 +154,18 @@ iface = gr.Interface(
|
|
| 54 |
inputs=[
|
| 55 |
gr.Dropdown(model_options, label="Select Model"),
|
| 56 |
gr.Dropdown(task_options, label="Select Task"),
|
|
|
|
| 57 |
],
|
| 58 |
outputs=[
|
| 59 |
gr.Textbox(label="Strategy 1 QA Result"),
|
| 60 |
gr.Textbox(label="Strategy 2 Instruction Result"),
|
| 61 |
gr.Textbox(label="Strategy 3 Structured Prompting Result"),
|
| 62 |
],
|
|
|
|
| 63 |
theme = theme,
|
| 64 |
live=False,
|
| 65 |
)
|
| 66 |
|
| 67 |
iface.launch()
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
import json
|
| 4 |
+
import time
|
| 5 |
+
import openai
|
| 6 |
+
import pickle
|
| 7 |
+
import argparse
|
| 8 |
+
import requests
|
| 9 |
from tqdm import tqdm
|
| 10 |
+
import torch
|
| 11 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizer
|
| 12 |
|
| 13 |
+
from fastchat.model import load_model, get_conversation_template, add_model_args
|
| 14 |
+
|
| 15 |
+
from nltk.tag.mapping import _UNIVERSAL_TAGS
|
| 16 |
+
|
| 17 |
+
import gradio as gr
|
| 18 |
+
from transformers import pipeline
|
| 19 |
+
|
| 20 |
+
uni_tags = list(_UNIVERSAL_TAGS)
|
| 21 |
+
uni_tags[-1] = 'PUNC'
|
| 22 |
+
|
| 23 |
+
bio_tags = ['B', 'I', 'O']
|
| 24 |
+
chunk_tags = ['ADJP', 'ADVP', 'CONJP', 'INTJ', 'LST', 'NP', 'O', 'PP', 'PRT', 'SBAR', 'UCP', 'VP']
|
| 25 |
+
|
| 26 |
+
syntags = ['NP', 'S', 'VP', 'ADJP', 'ADVP', 'SBAR', 'TOP', 'PP', 'POS', 'NAC', "''", 'SINV', 'PRN', 'QP', 'WHNP', 'RB', 'FRAG',
|
| 27 |
+
'WHADVP', 'NX', 'PRT', 'VBZ', 'VBP', 'MD', 'NN', 'WHPP', 'SQ', 'SBARQ', 'LST', 'INTJ', 'X', 'UCP', 'CONJP', 'NNP', 'CD', 'JJ',
|
| 28 |
+
'VBD', 'WHADJP', 'PRP', 'RRC', 'NNS', 'SYM', 'CC']
|
| 29 |
+
|
| 30 |
+
openai.api_key = "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"
|
| 31 |
+
|
| 32 |
+
# determinant vs. determiner
|
| 33 |
+
# https://wikidiff.com/determiner/determinant
|
| 34 |
+
ents_prompt = ['Noun','Verb','Adjective','Adverb','Preposition/Subord','Coordinating Conjunction',# 'Cardinal Number',
|
| 35 |
+
'Determiner',
|
| 36 |
+
'Noun Phrase','Verb Phrase','Adjective Phrase','Adverb Phrase','Preposition Phrase','Conjunction Phrase','Coordinate Phrase','Quantitave Phrase','Complex Nominal',
|
| 37 |
+
'Clause','Dependent Clause','Fragment Clause','T-unit','Complex T-unit',# 'Fragment T-unit',
|
| 38 |
+
][7:]
|
| 39 |
+
ents = ['NN', 'VB', 'JJ', 'RB', 'IN', 'CC', 'DT', 'NP', 'VP', 'ADJP', 'ADVP', 'PP', 'CONJP', 'CP', 'QP', 'CN', 'C', 'DC', 'FC', 'T', 'CT'][7:]
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
ents_prompt_uni_tags = ['Verb', 'Noun', 'Pronoun', 'Adjective', 'Adverb', 'Preposition and Postposition', 'Coordinating Conjunction',
|
| 43 |
+
'Determiner', 'Cardinal Number', 'Particles or other function words',
|
| 44 |
+
'Words that cannot be assigned a POS tag', 'Punctuation']
|
| 45 |
+
|
| 46 |
+
ents = uni_tags + ents
|
| 47 |
+
ents_prompt = ents_prompt_uni_tags + ents_prompt
|
| 48 |
+
|
| 49 |
+
for i, j in zip(ents, ents_prompt):
|
| 50 |
+
print(i, j)
|
| 51 |
+
|
| 52 |
+
model_mapping = {
|
| 53 |
+
'gpt3.5': 'gpt-3.5-turbo-0613',
|
| 54 |
+
'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
|
| 55 |
+
'vicuna-13b': 'lmsys/vicuna-13b-v1.3',
|
| 56 |
+
'vicuna-33b': 'lmsys/vicuna-33b-v1.3',
|
| 57 |
+
'fastchat-t5': 'lmsys/fastchat-t5-3b-v1.0',
|
| 58 |
+
'llama-7b': './llama/hf/7B',
|
| 59 |
+
'llama-13b': './llama/hf/13B',
|
| 60 |
+
'llama-30b': './llama/hf/30B',
|
| 61 |
+
'alpaca': './alpaca-7B',
|
| 62 |
+
}
|
| 63 |
|
| 64 |
with open('sample_uniform_1k_2.txt', 'r') as f:
|
| 65 |
selected_idx = f.readlines()
|
| 66 |
selected_idx = [int(i.strip()) for i in selected_idx]#[s:e]
|
| 67 |
|
|
|
|
|
|
|
| 68 |
ptb = []
|
| 69 |
with open('ptb.jsonl', 'r') as f:
|
| 70 |
for l in f:
|
| 71 |
ptb.append(json.loads(l))
|
| 72 |
|
| 73 |
+
|
| 74 |
+
## Prompt 1
|
| 75 |
+
template_all = '''Please output the <Noun, Verb, Adjective, Adverb, Preposition/Subord, Coordinating Conjunction, Cardinal Number, Determiner, Noun Phrase, Verb Phrase, Adjective Phrase, Adverb Phrase, Preposition Phrase, Conjunction Phrase, Coordinate Phrase, Quantitave Phrase, Complex Nominal, Clause, Dependent Clause, Fragment Clause, T-unit, Complex T-unit, Fragment T-unit> in the following sentence without any additional text in json format: "{}"'''
|
| 76 |
+
template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"'''
|
| 77 |
+
|
| 78 |
+
## Prompt 2
|
| 79 |
+
prompt2_pos = '''Please pos tag the following sentence using Universal POS tag set without generating any additional text: {}'''
|
| 80 |
+
prompt2_chunk = '''Please do sentence chunking for the following sentence as in CoNLL 2000 shared task without generating any addtional text: {}'''
|
| 81 |
+
prompt2_parse = '''Generate textual representation of the constituency parse tree of the following sentence using Penn TreeBank tag set without outputing any additional text: {}'''
|
| 82 |
+
|
| 83 |
+
prompt2_chunk = '''Please chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {}'''
|
| 84 |
+
|
| 85 |
+
## Prompt 3
|
| 86 |
+
with open('demonstration_3_42_pos.txt', 'r') as f:
|
| 87 |
+
demon_pos = f.read()
|
| 88 |
+
with open('demonstration_3_42_chunk.txt', 'r') as f:
|
| 89 |
+
demon_chunk = f.read()
|
| 90 |
+
with open('demonstration_3_42_parse.txt', 'r') as f:
|
| 91 |
+
demon_parse = f.read()
|
| 92 |
+
|
| 93 |
+
# Your existing code
|
| 94 |
+
theme = gr.themes.Soft()
|
| 95 |
+
|
| 96 |
+
pipeline = pipeline(task="text-generation", model="lmsys/vicuna-7b-v1.3")
|
| 97 |
+
|
| 98 |
+
# Dropdown options for model and task
|
| 99 |
+
model_options = list(model_mapping.keys())
|
| 100 |
+
task_options = ['POS', 'Chunking', 'Parsing']
|
| 101 |
+
|
| 102 |
# Function to process text based on model and task
|
| 103 |
def process_text(model_name, task, text):
|
| 104 |
+
gid_list = selected_idx[0:20]
|
| 105 |
+
|
| 106 |
for gid in tqdm(gid_list, desc='Query'):
|
| 107 |
text = ptb[gid]['text']
|
| 108 |
+
|
| 109 |
+
#if model_name is 'gpt3.5': 'gpt-3.5-turbo-0613',
|
| 110 |
+
#elif model_name is 'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
|
| 111 |
+
#elif model_name is 'vicuna-13b': 'lmsys/vicuna-13b-v1.3',
|
| 112 |
+
#elif model_name is 'vicuna-33b': 'lmsys/vicuna-33b-v1.3',
|
| 113 |
+
#elif model_name is 'fastchat-t5': 'lmsys/fastchat-t5-3b-v1.0',
|
| 114 |
+
#elif model_name is 'llama-7b': './llama/hf/7B',
|
| 115 |
+
#elif model_name is 'llama-13b': './llama/hf/13B',
|
| 116 |
+
#elif model_name is 'llama-30b': './llama/hf/30B',
|
| 117 |
+
#elif model_name is 'alpaca': './alpaca-7B',
|
| 118 |
|
| 119 |
+
if task == 'POS':
|
| 120 |
+
strategy1 = pipeline(template_all.format(text))
|
| 121 |
+
strategy2 = pipeline(prompt2_pos.format(text))
|
| 122 |
+
strategy3 = pipeline(demon_pos)
|
| 123 |
+
return (strategy1, strategy2, strategy3)
|
| 124 |
+
elif task == 'Chunking':
|
| 125 |
+
strategy1 = pipeline(template_all.format(text))
|
| 126 |
+
strategy2 = pipeline(prompt2_chunk.format(text))
|
| 127 |
+
strategy3 = pipeline(demon_chunk)
|
| 128 |
+
return (strategy1, strategy2, strategy3)
|
| 129 |
+
elif task == 'Parsing':
|
| 130 |
+
strategy1 = pipeline(template_all.format(text))
|
| 131 |
+
strategy2 = pipeline(prompt2_parse.format(text))
|
| 132 |
+
strategy3 = pipeline(demon_parse)
|
| 133 |
+
return (strategy1, strategy2, strategy3)
|
| 134 |
+
|
| 135 |
# Define prompts for each strategy based on the task
|
| 136 |
+
#strategy_prompts = {
|
| 137 |
+
# 'Strategy 1': template_all.format(text),
|
| 138 |
+
# 'Strategy 2': {
|
| 139 |
+
# 'POS': prompt2_pos.format(text),
|
| 140 |
+
# 'Chunking': prompt2_chunk.format(text),
|
| 141 |
+
# 'Parsing': prompt2_parse.format(text),
|
| 142 |
+
# }.get(task, "Invalid Task Selection for Strategy 2"),
|
| 143 |
+
# 'Strategy 3': {
|
| 144 |
+
# 'POS': demon_pos,
|
| 145 |
+
# 'Chunking': demon_chunk,
|
| 146 |
+
# 'Parsing': demon_parse,
|
| 147 |
+
# }.get(task, "Invalid Task Selection for Strategy 3"),
|
| 148 |
+
#}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
# Gradio interface
|
| 152 |
iface = gr.Interface(
|
|
|
|
| 154 |
inputs=[
|
| 155 |
gr.Dropdown(model_options, label="Select Model"),
|
| 156 |
gr.Dropdown(task_options, label="Select Task"),
|
| 157 |
+
gr.Textbox(label="Input Text", placeholder="Enter the text to process..."),
|
| 158 |
],
|
| 159 |
outputs=[
|
| 160 |
gr.Textbox(label="Strategy 1 QA Result"),
|
| 161 |
gr.Textbox(label="Strategy 2 Instruction Result"),
|
| 162 |
gr.Textbox(label="Strategy 3 Structured Prompting Result"),
|
| 163 |
],
|
| 164 |
+
title = "LLM Evaluator For Linguistic Scrutiny",
|
| 165 |
theme = theme,
|
| 166 |
live=False,
|
| 167 |
)
|
| 168 |
|
| 169 |
iface.launch()
|
| 170 |
+
|
| 171 |
+
|
run_llm.py
CHANGED
|
@@ -15,6 +15,7 @@ from fastchat.model import load_model, get_conversation_template, add_model_args
|
|
| 15 |
from nltk.tag.mapping import _UNIVERSAL_TAGS
|
| 16 |
|
| 17 |
import gradio as gr
|
|
|
|
| 18 |
|
| 19 |
uni_tags = list(_UNIVERSAL_TAGS)
|
| 20 |
uni_tags[-1] = 'PUNC'
|
|
@@ -28,7 +29,6 @@ syntags = ['NP', 'S', 'VP', 'ADJP', 'ADVP', 'SBAR', 'TOP', 'PP', 'POS', 'NAC', "
|
|
| 28 |
|
| 29 |
openai.api_key = "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"
|
| 30 |
|
| 31 |
-
|
| 32 |
# determinant vs. determiner
|
| 33 |
# https://wikidiff.com/determiner/determinant
|
| 34 |
ents_prompt = ['Noun','Verb','Adjective','Adverb','Preposition/Subord','Coordinating Conjunction',# 'Cardinal Number',
|
|
@@ -48,33 +48,23 @@ ents_prompt = ents_prompt_uni_tags + ents_prompt
|
|
| 48 |
|
| 49 |
for i, j in zip(ents, ents_prompt):
|
| 50 |
print(i, j)
|
| 51 |
-
# raise
|
| 52 |
-
|
| 53 |
|
| 54 |
model_mapping = {
|
| 55 |
-
# 'gpt3': 'gpt-3',
|
| 56 |
'gpt3.5': 'gpt-3.5-turbo-0613',
|
| 57 |
'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
|
| 58 |
'vicuna-13b': 'lmsys/vicuna-13b-v1.3',
|
| 59 |
'vicuna-33b': 'lmsys/vicuna-33b-v1.3',
|
| 60 |
'fastchat-t5': 'lmsys/fastchat-t5-3b-v1.0',
|
| 61 |
-
# 'llama2-7b': 'meta-llama/Llama-2-7b-hf',
|
| 62 |
-
# 'llama2-13b': 'meta-llama/Llama-2-13b-hf',
|
| 63 |
-
# 'llama2-70b': 'meta-llama/Llama-2-70b-hf',
|
| 64 |
'llama-7b': './llama/hf/7B',
|
| 65 |
'llama-13b': './llama/hf/13B',
|
| 66 |
'llama-30b': './llama/hf/30B',
|
| 67 |
-
# 'llama-65b': './llama/hf/65B',
|
| 68 |
'alpaca': './alpaca-7B',
|
| 69 |
-
# 'koala-7b': 'koala-7b',
|
| 70 |
-
# 'koala-13b': 'koala-13b',
|
| 71 |
}
|
| 72 |
|
| 73 |
with open('sample_uniform_1k_2.txt', 'r') as f:
|
| 74 |
selected_idx = f.readlines()
|
| 75 |
selected_idx = [int(i.strip()) for i in selected_idx]#[s:e]
|
| 76 |
|
| 77 |
-
|
| 78 |
ptb = []
|
| 79 |
with open('ptb.jsonl', 'r') as f:
|
| 80 |
for l in f:
|
|
@@ -100,3 +90,82 @@ with open('demonstration_3_42_chunk.txt', 'r') as f:
|
|
| 100 |
with open('demonstration_3_42_parse.txt', 'r') as f:
|
| 101 |
demon_parse = f.read()
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
from nltk.tag.mapping import _UNIVERSAL_TAGS
|
| 16 |
|
| 17 |
import gradio as gr
|
| 18 |
+
from transformers import pipeline
|
| 19 |
|
| 20 |
uni_tags = list(_UNIVERSAL_TAGS)
|
| 21 |
uni_tags[-1] = 'PUNC'
|
|
|
|
| 29 |
|
| 30 |
openai.api_key = "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"
|
| 31 |
|
|
|
|
| 32 |
# determinant vs. determiner
|
| 33 |
# https://wikidiff.com/determiner/determinant
|
| 34 |
ents_prompt = ['Noun','Verb','Adjective','Adverb','Preposition/Subord','Coordinating Conjunction',# 'Cardinal Number',
|
|
|
|
| 48 |
|
| 49 |
for i, j in zip(ents, ents_prompt):
|
| 50 |
print(i, j)
|
|
|
|
|
|
|
| 51 |
|
| 52 |
model_mapping = {
|
|
|
|
| 53 |
'gpt3.5': 'gpt-3.5-turbo-0613',
|
| 54 |
'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
|
| 55 |
'vicuna-13b': 'lmsys/vicuna-13b-v1.3',
|
| 56 |
'vicuna-33b': 'lmsys/vicuna-33b-v1.3',
|
| 57 |
'fastchat-t5': 'lmsys/fastchat-t5-3b-v1.0',
|
|
|
|
|
|
|
|
|
|
| 58 |
'llama-7b': './llama/hf/7B',
|
| 59 |
'llama-13b': './llama/hf/13B',
|
| 60 |
'llama-30b': './llama/hf/30B',
|
|
|
|
| 61 |
'alpaca': './alpaca-7B',
|
|
|
|
|
|
|
| 62 |
}
|
| 63 |
|
| 64 |
with open('sample_uniform_1k_2.txt', 'r') as f:
|
| 65 |
selected_idx = f.readlines()
|
| 66 |
selected_idx = [int(i.strip()) for i in selected_idx]#[s:e]
|
| 67 |
|
|
|
|
| 68 |
ptb = []
|
| 69 |
with open('ptb.jsonl', 'r') as f:
|
| 70 |
for l in f:
|
|
|
|
| 90 |
with open('demonstration_3_42_parse.txt', 'r') as f:
|
| 91 |
demon_parse = f.read()
|
| 92 |
|
| 93 |
+
# Your existing code
|
| 94 |
+
theme = gr.themes.Soft()
|
| 95 |
+
|
| 96 |
+
pipeline = pipeline(task="text-generation", model="lmsys/vicuna-7b-v1.3")
|
| 97 |
+
|
| 98 |
+
# Dropdown options for model and task
|
| 99 |
+
model_options = list(model_mapping.keys())
|
| 100 |
+
task_options = ['POS', 'Chunking', 'Parsing']
|
| 101 |
+
|
| 102 |
+
# Function to process text based on model and task
|
| 103 |
+
def process_text(model_name, task, text):
|
| 104 |
+
gid_list = selected_idx[0:20]
|
| 105 |
+
|
| 106 |
+
for gid in tqdm(gid_list, desc='Query'):
|
| 107 |
+
text = ptb[gid]['text']
|
| 108 |
+
|
| 109 |
+
#if model_name is 'gpt3.5': 'gpt-3.5-turbo-0613',
|
| 110 |
+
#elif model_name is 'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
|
| 111 |
+
#elif model_name is 'vicuna-13b': 'lmsys/vicuna-13b-v1.3',
|
| 112 |
+
#elif model_name is 'vicuna-33b': 'lmsys/vicuna-33b-v1.3',
|
| 113 |
+
#elif model_name is 'fastchat-t5': 'lmsys/fastchat-t5-3b-v1.0',
|
| 114 |
+
#elif model_name is 'llama-7b': './llama/hf/7B',
|
| 115 |
+
#elif model_name is 'llama-13b': './llama/hf/13B',
|
| 116 |
+
#elif model_name is 'llama-30b': './llama/hf/30B',
|
| 117 |
+
#elif model_name is 'alpaca': './alpaca-7B',
|
| 118 |
+
|
| 119 |
+
if task == 'POS':
|
| 120 |
+
strategy1 = pipeline(template_all.format(text))
|
| 121 |
+
strategy2 = pipeline(prompt2_pos.format(text))
|
| 122 |
+
strategy3 = pipeline(demon_pos)
|
| 123 |
+
return (strategy1, strategy2, strategy3)
|
| 124 |
+
elif task == 'Chunking':
|
| 125 |
+
strategy1 = pipeline(template_all.format(text))
|
| 126 |
+
strategy2 = pipeline(prompt2_chunk.format(text))
|
| 127 |
+
strategy3 = pipeline(demon_chunk)
|
| 128 |
+
return (strategy1, strategy2, strategy3)
|
| 129 |
+
elif task == 'Parsing':
|
| 130 |
+
strategy1 = pipeline(template_all.format(text))
|
| 131 |
+
strategy2 = pipeline(prompt2_parse.format(text))
|
| 132 |
+
strategy3 = pipeline(demon_parse)
|
| 133 |
+
return (strategy1, strategy2, strategy3)
|
| 134 |
+
|
| 135 |
+
# Define prompts for each strategy based on the task
|
| 136 |
+
#strategy_prompts = {
|
| 137 |
+
# 'Strategy 1': template_all.format(text),
|
| 138 |
+
# 'Strategy 2': {
|
| 139 |
+
# 'POS': prompt2_pos.format(text),
|
| 140 |
+
# 'Chunking': prompt2_chunk.format(text),
|
| 141 |
+
# 'Parsing': prompt2_parse.format(text),
|
| 142 |
+
# }.get(task, "Invalid Task Selection for Strategy 2"),
|
| 143 |
+
# 'Strategy 3': {
|
| 144 |
+
# 'POS': demon_pos,
|
| 145 |
+
# 'Chunking': demon_chunk,
|
| 146 |
+
# 'Parsing': demon_parse,
|
| 147 |
+
# }.get(task, "Invalid Task Selection for Strategy 3"),
|
| 148 |
+
#}
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# Gradio interface
|
| 152 |
+
iface = gr.Interface(
|
| 153 |
+
fn=process_text,
|
| 154 |
+
inputs=[
|
| 155 |
+
gr.Dropdown(model_options, label="Select Model"),
|
| 156 |
+
gr.Dropdown(task_options, label="Select Task"),
|
| 157 |
+
gr.Textbox(label="Input Text", placeholder="Enter the text to process..."),
|
| 158 |
+
],
|
| 159 |
+
outputs=[
|
| 160 |
+
gr.Textbox(label="Strategy 1 QA Result"),
|
| 161 |
+
gr.Textbox(label="Strategy 2 Instruction Result"),
|
| 162 |
+
gr.Textbox(label="Strategy 3 Structured Prompting Result"),
|
| 163 |
+
],
|
| 164 |
+
title = "LLM Evaluator For Linguistic Scrutiny",
|
| 165 |
+
theme = theme,
|
| 166 |
+
live=False,
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
iface.launch()
|
| 170 |
+
|
| 171 |
+
|