Spaces:
Runtime error
Runtime error
Commit
·
ee8b9cc
1
Parent(s):
c15f723
added formatted prompt to model fns
Browse files
app.py
CHANGED
@@ -56,22 +56,22 @@ def gpt_respond(tab_name, message, chat_history, max_convo_length = 10):
|
|
56 |
return "", chat_history
|
57 |
|
58 |
def vicuna_respond(tab_name, message, chat_history):
|
59 |
-
|
60 |
-
input_ids = vicuna_tokenizer.encode(
|
61 |
output_ids = vicuna_model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2)
|
62 |
bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
63 |
|
64 |
-
chat_history.append((
|
65 |
time.sleep(2)
|
66 |
return "", chat_history
|
67 |
|
68 |
def llama_respond(tab_name, message, chat_history):
|
69 |
-
|
70 |
-
input_ids = llama_tokenizer.encode(
|
71 |
output_ids = llama_model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2)
|
72 |
bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
73 |
|
74 |
-
chat_history.append((
|
75 |
time.sleep(2)
|
76 |
return "", chat_history
|
77 |
|
|
|
56 |
return "", chat_history
|
57 |
|
58 |
def vicuna_respond(tab_name, message, chat_history):
|
59 |
+
formatted_prompt = f'''Generate the output only for the assistant. Please output any <{tab_name}> in the following sentence one per line without any additional text: <{message}>'''
|
60 |
+
input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
|
61 |
output_ids = vicuna_model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2)
|
62 |
bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
63 |
|
64 |
+
chat_history.append((formatted_prompt, bot_message))
|
65 |
time.sleep(2)
|
66 |
return "", chat_history
|
67 |
|
68 |
def llama_respond(tab_name, message, chat_history):
|
69 |
+
formatted_prompt = f'''Generate the output only for the assistant. Please output any <{tab_name}> in the following sentence one per line without any additional text: <{message}>'''
|
70 |
+
input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
|
71 |
output_ids = llama_model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2)
|
72 |
bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
73 |
|
74 |
+
chat_history.append((formatted_prompt, bot_message))
|
75 |
time.sleep(2)
|
76 |
return "", chat_history
|
77 |
|