Spaces:
Runtime error
Runtime error
Commit
·
f2bf6a1
1
Parent(s):
98e9a40
enabled do_sample
Browse files
app.py
CHANGED
@@ -5,8 +5,8 @@ import os
|
|
5 |
import openai
|
6 |
|
7 |
# Load the Vicuna 7B model and tokenizer
|
8 |
-
vicuna_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.
|
9 |
-
vicuna_model = AutoModelForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.
|
10 |
|
11 |
# Load the LLaMA 7b model and tokenizer
|
12 |
llama_tokenizer = AutoTokenizer.from_pretrained("daryl149/llama-2-7b-chat-hf")
|
@@ -60,7 +60,7 @@ def vicuna_respond(tab_name, message, chat_history):
|
|
60 |
print('Prompt + Context:')
|
61 |
print(formatted_prompt)
|
62 |
input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
|
63 |
-
output_ids = vicuna_model.generate(input_ids, max_length=149, num_beams=5, no_repeat_ngram_size=2)
|
64 |
bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
65 |
print(bot_message)
|
66 |
|
@@ -73,7 +73,7 @@ def llama_respond(tab_name, message, chat_history):
|
|
73 |
print('Prompt + Context:')
|
74 |
print(formatted_prompt)
|
75 |
input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
|
76 |
-
output_ids = llama_model.generate(input_ids, max_length=149, num_beams=5, no_repeat_ngram_size=2)
|
77 |
bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
78 |
print(bot_message)
|
79 |
|
|
|
5 |
import openai
|
6 |
|
7 |
# Load the Vicuna 7B model and tokenizer
|
8 |
+
vicuna_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3")
|
9 |
+
vicuna_model = AutoModelForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3")
|
10 |
|
11 |
# Load the LLaMA 7b model and tokenizer
|
12 |
llama_tokenizer = AutoTokenizer.from_pretrained("daryl149/llama-2-7b-chat-hf")
|
|
|
60 |
print('Prompt + Context:')
|
61 |
print(formatted_prompt)
|
62 |
input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
|
63 |
+
output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=149, num_beams=5, no_repeat_ngram_size=2)
|
64 |
bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
65 |
print(bot_message)
|
66 |
|
|
|
73 |
print('Prompt + Context:')
|
74 |
print(formatted_prompt)
|
75 |
input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
|
76 |
+
output_ids = llama_model.generate(input_ids, do_sample=True, max_length=149, num_beams=5, no_repeat_ngram_size=2)
|
77 |
bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
78 |
print(bot_message)
|
79 |
|