research14 commited on
Commit
fa3ff72
·
1 Parent(s): 816d981
Files changed (1) hide show
  1. app.py +12 -33
app.py CHANGED
@@ -50,15 +50,9 @@ for i, j in zip(ents, ents_prompt):
50
  print(i, j)
51
 
52
  model_mapping = {
53
- #'gpt3.5': 'gpt2',
54
  'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
55
- #'vicuna-13b': 'lmsys/vicuna-13b-v1.3',
56
- #'vicuna-33b': 'lmsys/vicuna-33b-v1.3',
57
- #'fastchat-t5': 'lmsys/fastchat-t5-3b-v1.0',
58
- #'llama-7b': './llama/hf/7B',
59
- #'llama-13b': './llama/hf/13B',
60
- #'llama-30b': './llama/hf/30B',
61
- #'alpaca': './alpaca-7B',
62
  }
63
 
64
  with open('sample_uniform_1k_2.txt', 'r') as f:
@@ -93,20 +87,14 @@ with open('demonstration_3_42_parse.txt', 'r') as f:
93
  # Your existing code
94
  theme = gr.themes.Soft()
95
 
96
-
97
- #gpt_pipeline = pipeline(task="text2text-generation", model="gpt2")
98
  vicuna7b_pipeline = pipeline(task="text2text-generation", model="lmsys/vicuna-7b-v1.3")
99
- #vicuna13b_pipeline = pipeline(task="text2text-generation", model="lmsys/vicuna-13b-v1.3")
100
- #vicuna33b_pipeline = pipeline(task="text2text-generation", model="lmsys/vicuna-33b-v1.3")
101
- #fastchatT5_pipeline = pipeline(task="text2text-generation", model="lmsys/fastchat-t5-3b-v1.0")
102
- #llama7b_pipeline = pipeline(task="text2text-generation", model="./llama/hf/7B")
103
- #llama13b_pipeline = pipeline(task="text2text-generation", model="./llama/hf/13B")
104
- #llama30b_pipeline = pipeline(task="text2text-generation", model="./llama/hf/30B")
105
- #alpaca_pipeline = pipeline(task="text2text-generation", model="./alpaca-7B")
106
 
107
  # Dropdown options for model and task
108
  model_options = list(model_mapping.keys())
109
- task_options = ['POS', 'Chunking', 'Parsing']
110
 
111
 
112
  # Function to process text based on model and task
@@ -122,27 +110,18 @@ def process_text(model_name, task, text):
122
  strategy2_format = prompt2_pos.format(text)
123
  strategy3_format = demon_pos
124
 
125
- result1 = vicuna7b_pipeline(strategy1_format)[0]['generated_text']
126
- result2 = vicuna7b_pipeline(strategy2_format)[0]['generated_text']
127
- result3 = vicuna7b_pipeline(strategy3_format)[0]['generated_text']
128
  return (result1, result2, result3)
129
  elif task == 'Chunking':
130
  strategy1_format = template_all.format(text)
131
  strategy2_format = prompt2_chunk.format(text)
132
  strategy3_format = demon_chunk
133
 
134
- result1 = vicuna7b_pipeline(strategy1_format)[0]['generated_text']
135
- result2 = vicuna7b_pipeline(strategy2_format)[0]['generated_text']
136
- result3 = vicuna7b_pipeline(strategy3_format)[0]['generated_text']
137
- return (result1, result2, result3)
138
- elif task == 'Parsing':
139
- strategy1_format = template_all.format(text)
140
- strategy2_format = prompt2_parse.format(text)
141
- strategy3_format = demon_parse
142
-
143
- result1 = vicuna7b_pipeline(strategy1_format)[0]['generated_text']
144
- result2 = vicuna7b_pipeline(strategy2_format)[0]['generated_text']
145
- result3 = vicuna7b_pipeline(strategy3_format)[0]['generated_text']
146
  return (result1, result2, result3)
147
 
148
  # Gradio interface
 
50
  print(i, j)
51
 
52
  model_mapping = {
53
+ 'gpt3.5': 'gpt-3.5-turbo-0613',
54
  'vicuna-7b': 'lmsys/vicuna-7b-v1.3',
55
+ 'llama-7b': './llama/hf/7B',
 
 
 
 
 
 
56
  }
57
 
58
  with open('sample_uniform_1k_2.txt', 'r') as f:
 
87
  # Your existing code
88
  theme = gr.themes.Soft()
89
 
90
+ # issue get request for gpt 3.5
91
+ gpt_pipeline = pipeline(task="text2text-generation", model="gpt3.5")
92
  vicuna7b_pipeline = pipeline(task="text2text-generation", model="lmsys/vicuna-7b-v1.3")
93
+ llama7b_pipeline = pipeline(task="text2text-generation", model="./llama/hf/7B")
 
 
 
 
 
 
94
 
95
  # Dropdown options for model and task
96
  model_options = list(model_mapping.keys())
97
+ task_options = ['POS', 'Chunking'] # remove parsing
98
 
99
 
100
  # Function to process text based on model and task
 
110
  strategy2_format = prompt2_pos.format(text)
111
  strategy3_format = demon_pos
112
 
113
+ result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
114
+ result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
115
+ result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
116
  return (result1, result2, result3)
117
  elif task == 'Chunking':
118
  strategy1_format = template_all.format(text)
119
  strategy2_format = prompt2_chunk.format(text)
120
  strategy3_format = demon_chunk
121
 
122
+ result1 = gpt_pipeline(strategy1_format)[0]['generated_text']
123
+ result2 = gpt_pipeline(strategy2_format)[0]['generated_text']
124
+ result3 = gpt_pipeline(strategy3_format)[0]['generated_text']
 
 
 
 
 
 
 
 
 
125
  return (result1, result2, result3)
126
 
127
  # Gradio interface