import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import time import openai openai.api_key = "OPENAI_API_KEY" # Load the Vicuna 7B v1.3 LMSys model and tokenizer model_name = "lmsys/vicuna-7b-v1.3" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"''' Noun Determiner Noun phrase Verb phrase Dependent Clause T-units def interface(): gr.Markdown(" Description ") prompt_POS = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter") openai_key = gr.Textbox(label="Open AI Key", placeholder="Enter your Openai key here", type="password") gr.Markdown("Strategy 1 QA-Based Prompting") with gr.Row(): vicuna_S1_chatbot_POS = gr.Chatbot(label="vicuna-7b") llama_S1_chatbot_POS = gr.Chatbot(label="llama-7b") gpt_S1_chatbot_POS = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton([prompt_POS, vicuna_S1_chatbot_POS]) gr.Markdown("Strategy 2 Instruction-Based Prompting") with gr.Row(): vicuna_S2_chatbot_POS = gr.Chatbot(label="vicuna-7b") llama_S2_chatbot_POS = gr.Chatbot(label="llama-7b") gpt_S2_chatbot_POS = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton([prompt_POS, vicuna_S2_chatbot_POS]) gr.Markdown("Strategy 3 Structured Prompting") with gr.Row(): vicuna_S3_chatbot_POS = gr.Chatbot(label="vicuna-7b") llama_S3_chatbot_POS = gr.Chatbot(label="llama-7b") gpt_S3_chatbot_POS = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton([prompt_POS, vicuna_S3_chatbot_POS]) prompt_POS.submit(respond, [prompt_POS, vicuna_S1_chatbot_POS], [prompt_POS, vicuna_S1_chatbot_POS]) prompt_POS.submit(respond, [prompt_POS, vicuna_S2_chatbot_POS], [prompt_POS, vicuna_S2_chatbot_POS]) prompt_POS.submit(respond, [prompt_POS, vicuna_S3_chatbot_POS], [prompt_POS, vicuna_S3_chatbot_POS]) with gr.Blocks() as demo: gr.Markdown("# LLM Evaluator With Linguistic Scrutiny") with gr.Tab("Noun"): interface() with gr.Tab("Determiner"): gr.Markdown(" Description ") prompt_CHUNK = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter") gr.Markdown("Strategy 1 QA") with gr.Row(): vicuna_S1_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b") llama_S1_chatbot_CHUNK = gr.Chatbot(label="llama-7b") gpt_S1_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton([prompt_CHUNK, vicuna_S1_chatbot_CHUNK]) gr.Markdown("Strategy 2 Instruction") with gr.Row(): vicuna_S2_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b") llama_S2_chatbot_CHUNK = gr.Chatbot(label="llama-7b") gpt_S2_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton([prompt_CHUNK, vicuna_S2_chatbot_CHUNK]) gr.Markdown("Strategy 3 Structured Prompting") with gr.Row(): vicuna_S3_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b") llama_S3_chatbot_CHUNK = gr.Chatbot(label="llama-7b") gpt_S3_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5") clear = gr.ClearButton([prompt_CHUNK, vicuna_S3_chatbot_CHUNK]) with gr.Tab("Noun phrase"): interface() with gr.Tab("Verb phrase"): interface() with gr.Tab("Dependent clause"): interface() with gr.Tab("T-units"): interface() def gpt3(prompt): response = openai.ChatCompletion.create( model='gpt3.5', messages=[{"role": "user", "content": prompt}]) return response['choices'][0]['message']['content'] def respond(message, chat_history): input_ids = tokenizer.encode(message, return_tensors="pt") output_ids = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2) bot_message = tokenizer.decode(output_ids[0], skip_special_tokens=True) chat_history.append((message, bot_message)) time.sleep(2) return "", chat_history prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S1_chatbot_CHUNK], [prompt_CHUNK, vicuna_S1_chatbot_CHUNK]) prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S2_chatbot_CHUNK], [prompt_CHUNK, vicuna_S2_chatbot_CHUNK]) prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S3_chatbot_CHUNK], [prompt_CHUNK, vicuna_S3_chatbot_CHUNK]) demo.launch()