import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import time
import openai

openai.api_key = "OPENAI_API_KEY"

# Load the Vicuna 7B v1.3 LMSys model and tokenizer
model_name = "lmsys/vicuna-7b-v1.3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

template_single = '''Please output any <{}> in the following sentence one per line without any additional text: "{}"'''

Noun
Determiner
Noun phrase
Verb phrase
Dependent Clause
T-units

def interface():
        gr.Markdown(" Description ")

        prompt_POS = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
        openai_key = gr.Textbox(label="Open AI Key", placeholder="Enter your Openai key here", type="password")

        gr.Markdown("Strategy 1 QA-Based Prompting")
        with gr.Row():
            vicuna_S1_chatbot_POS = gr.Chatbot(label="vicuna-7b")
            llama_S1_chatbot_POS = gr.Chatbot(label="llama-7b")
            gpt_S1_chatbot_POS = gr.Chatbot(label="gpt-3.5")
        clear = gr.ClearButton([prompt_POS, vicuna_S1_chatbot_POS])
        gr.Markdown("Strategy 2 Instruction-Based Prompting")
        with gr.Row():
            vicuna_S2_chatbot_POS = gr.Chatbot(label="vicuna-7b")
            llama_S2_chatbot_POS = gr.Chatbot(label="llama-7b")
            gpt_S2_chatbot_POS = gr.Chatbot(label="gpt-3.5")
        clear = gr.ClearButton([prompt_POS, vicuna_S2_chatbot_POS])
        gr.Markdown("Strategy 3 Structured Prompting")
        with gr.Row():
            vicuna_S3_chatbot_POS = gr.Chatbot(label="vicuna-7b")
            llama_S3_chatbot_POS = gr.Chatbot(label="llama-7b")
            gpt_S3_chatbot_POS = gr.Chatbot(label="gpt-3.5")
        clear = gr.ClearButton([prompt_POS, vicuna_S3_chatbot_POS])

        prompt_POS.submit(respond, [prompt_POS, vicuna_S1_chatbot_POS], [prompt_POS, vicuna_S1_chatbot_POS])
        prompt_POS.submit(respond, [prompt_POS, vicuna_S2_chatbot_POS], [prompt_POS, vicuna_S2_chatbot_POS])
        prompt_POS.submit(respond, [prompt_POS, vicuna_S3_chatbot_POS], [prompt_POS, vicuna_S3_chatbot_POS])
        

with gr.Blocks() as demo:
    gr.Markdown("# LLM Evaluator With Linguistic Scrutiny")

    with gr.Tab("Noun"):
        interface()
    
    with gr.Tab("Determiner"):
        gr.Markdown(" Description ")

        prompt_CHUNK = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")

        gr.Markdown("Strategy 1 QA")
        with gr.Row():
            vicuna_S1_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b")
            llama_S1_chatbot_CHUNK = gr.Chatbot(label="llama-7b")
            gpt_S1_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5")
        clear = gr.ClearButton([prompt_CHUNK, vicuna_S1_chatbot_CHUNK])
        gr.Markdown("Strategy 2 Instruction")
        with gr.Row():
            vicuna_S2_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b")
            llama_S2_chatbot_CHUNK = gr.Chatbot(label="llama-7b")
            gpt_S2_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5")
        clear = gr.ClearButton([prompt_CHUNK, vicuna_S2_chatbot_CHUNK])
        gr.Markdown("Strategy 3 Structured Prompting")
        with gr.Row():
            vicuna_S3_chatbot_CHUNK = gr.Chatbot(label="vicuna-7b")
            llama_S3_chatbot_CHUNK = gr.Chatbot(label="llama-7b")
            gpt_S3_chatbot_CHUNK = gr.Chatbot(label="gpt-3.5")
        clear = gr.ClearButton([prompt_CHUNK, vicuna_S3_chatbot_CHUNK])
    
    with gr.Tab("Noun phrase"):
        interface()
    with gr.Tab("Verb phrase"):
        interface()
    with gr.Tab("Dependent clause"):
        interface()
    with gr.Tab("T-units"):
        interface()
    
    def gpt3(prompt):
        response = openai.ChatCompletion.create(
            model='gpt3.5', messages=[{"role": "user", "content": prompt}])
        return response['choices'][0]['message']['content']

    def respond(message, chat_history):
        input_ids = tokenizer.encode(message, return_tensors="pt")
        output_ids = model.generate(input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2)
        bot_message = tokenizer.decode(output_ids[0], skip_special_tokens=True)
        
        chat_history.append((message, bot_message))
        time.sleep(2)
        return "", chat_history

    prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S1_chatbot_CHUNK], [prompt_CHUNK, vicuna_S1_chatbot_CHUNK])
    prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S2_chatbot_CHUNK], [prompt_CHUNK, vicuna_S2_chatbot_CHUNK])
    prompt_CHUNK.submit(respond, [prompt_CHUNK, vicuna_S3_chatbot_CHUNK], [prompt_CHUNK, vicuna_S3_chatbot_CHUNK])

demo.launch()